1
|
Chen J, Ran P, Xu Y, Khouchani M, Li X, Jian L, Abdelmajid T, Aittahssaint N, Yang Q, Li J, Zhao L. Biomimetic multifunctional nanoparticles for improved radiotherapy and immunotherapy in cancer treatment. Mater Today Bio 2025; 32:101698. [PMID: 40225127 PMCID: PMC11986628 DOI: 10.1016/j.mtbio.2025.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Radiotherapy represents a conventional approach in clinical cancer treatment, but suffers from insufficient DNA damage and limited tumor selectivity. Herein, bismuth oxyiodide quantum dots loaded hollow manganese dioxide (MB) nanoparticles was fabricated and subsequently wrapped with bacterial membrane vesicles (MVs) to create MB@MV nanoparticles. This biomimetic radiosensitizer is designed to enhance the efficacy of radiotherapy through a combined approach of tumor immunotherapy and oxygen delivery strategy. Upon systemic administration, MB@MV enhance tumor accumulation through specifically targeting the inflammatory milieu mediated by MVs, thereby activating dendritic cell-mediated innate immunotherapy. Concurrently, MB@MV demonstrate superior X-ray absorption, leading to effective DNA damage in tumor cells due to the high atomic number of bismuth. Notably, manganese dioxide react with the overexpressed H2O2 in the tumor microenvironment to alleviate hypoxia and fixing X-ray induced DNA damage in tumor cells, culminating in a multi-strategy approach to enhance radiotherapy sensitization. The findings from both in vitro and in vivo experiments demonstrate a significantly enhanced inhibition of tumor growth by MB@MV compared to tumors treated solely with X-ray. Overall, our multifunctional radiosensitizer MB@MV shows considerable promise in the field of tumor radiotherapy.
Collapse
Affiliation(s)
- Jiale Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, PR China
| | - Pan Ran
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu, 610051, PR China
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yizhao Xu
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| | - Mouna Khouchani
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Xin Li
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, PR China
| | - Ling Jian
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| | - Takoui Abdelmajid
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Nadia Aittahssaint
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, 610500, PR China
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu, 610051, PR China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu, 610051, PR China
- Development and Regeneration Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
| |
Collapse
|
2
|
Liu S, He X, Liang S, Wu A, Liu L, Hu W. Carbon ion irradiation mobilizes antitumor immunity: from concept to the clinic. Radiat Oncol 2025; 20:85. [PMID: 40405246 PMCID: PMC12100795 DOI: 10.1186/s13014-025-02647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/23/2025] [Indexed: 05/24/2025] Open
Abstract
Carbon ion radiotherapy (CIRT), a type of particle therapy, is at the forefront of clinical oncology treatments due to its superior physical properties and biological performance. Although CIRT has demonstrated outstanding therapeutic outcomes in clinical settings, the biological mechanisms underpinning its effects, particularly its immunogenic potential and the superiority of its induced antitumor immune response compared to photon radiotherapy, remain areas of active investigation. This review summarizes the latest research progress on the mechanisms of antitumor immune responses triggered by CIRT and discusses preclinical and clinical studies related to combined CIRT and immunotherapy (CCIT). Against the backdrop of extensive research and significant clinical efficacy achieved by combining radiotherapy with immunotherapy, this review provides a theoretical foundation for a better understanding of the superior tumor cell-killing effects of CIRT and the underlying immunological mechanisms. Further insights into the factors affecting the efficacy, toxic effects, and developmental limitations of this combination therapy mode will be instrumental in guiding the conduction of CCIT studies.
Collapse
Affiliation(s)
- Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Siqi Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Lu Liu
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
3
|
Zhu L, Tang Z, Jiang W, Dong Y, Li X, Huang K, Wu T, Xu L, Guo W, Gu Y. Cholesterol biosynthesis induced by radiotherapy inhibits cGAS-STING activation and contributes to colorectal cancer treatment resistance. Exp Mol Med 2025:10.1038/s12276-025-01457-6. [PMID: 40355720 DOI: 10.1038/s12276-025-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 05/14/2025] Open
Abstract
Radiotherapy-induced DNA damage can lead to apoptotic cell death and trigger an anti-tumor immune response via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which senses cytoplasmic double-stranded DNA. However, radiotherapy resistance poses a significant challenge in treating cancers, including colorectal cancer (CRC). Understanding the mechanisms underlying this resistance is crucial for developing effective therapies. Here we report that radiotherapy enhances cholesterol synthesis, which subsequently inhibits the cGAS-STING pathway, leading to radiotherapy resistance. Mechanistically, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) levels increase rapidly in response to radiation, resulting in increased cholesterol synthesis. This increased cholesterol sequesters STING in the endoplasmic reticulum, hindering its activation and downstream interferon signaling. Elevated HMGCR and cholesterol levels correlate with poor prognosis and reduced response to radiation therapy in patients with CRC. Importantly, pharmacological inactivation of HMGCR significantly enhanced radiotherapy responsiveness in animal models, dependent on cGAS-STING signaling-mediated anti-tumor responses. Our findings reveal that radiotherapy-induced cholesterol inhibits cGAS-STING signaling, facilitating tumor immune escape. Therefore, combining statins with radiotherapy represents a promising therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhaohui Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China
| | - Wen Jiang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuwen Dong
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China
| | - Tiancong Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Science, Nanjing University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, The First Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Jiang Q, Chen Z, Jiang J, Chen Q, Lan H, Zhu J, Mao W. The role of cGAS-STING in remodeling the tumor immune microenvironment induced by radiotherapy. Crit Rev Oncol Hematol 2025; 209:104658. [PMID: 39956501 DOI: 10.1016/j.critrevonc.2025.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
The activation of the cGAS-STING pathway occurs when tumor cell DNA is damaged by ionizing radiation. Once triggered, this pathway reshapes the tumor immune microenvironment by promoting the maturation, activation, polarization, and immune-killing capacity of immune cells, as well as by inducing the release of interferons and the expression of immune-related genes. In addition, the gut microbiota and various mechanisms of programmed cell death interact with the cGAS-STING pathway, further influencing its function in remodeling the immune microenvironment after radiotherapy. Therefore, investigating the mechanisms of the cGAS-STING pathway in reshaping the tumor immune microenvironment post-radiotherapy can not only optimize the efficacy of combined radiotherapy and immunotherapy but also provide new research directions and potential targets for cancer treatment.
Collapse
Affiliation(s)
- Qingyu Jiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Zhejiang Chinese Medical University, Hangzhou 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Zhiheng Chen
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| |
Collapse
|
5
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
6
|
Marimuthu MMC, Balamurugan BS, Sundaram VA, Anbalagan S, Chopra H. Cytokine-based immunotherapy for gastric cancer: targeting inflammation for tumor control. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002312. [PMID: 40309351 PMCID: PMC12040674 DOI: 10.37349/etat.2025.1002312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Emerging cancer immunotherapy methods, notably cytokine-based ones that modify immune systems' inflammatory reactions to tumor cells, may help slow gastric cancer progression. Cytokines, tiny signaling proteins that communicate between immune cells, may help or hinder cancer growth. Pro-inflammatory cytokines encourage tumor development, whereas antitumor ones help the host reject cancer cells. This study considers cytokine-targeted methods for gastric cancer pro-inflammatory and antitumor immune responses. Researchers want to renew immune cells like cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells by delivering cytokines like interleukin-2 (IL-2), interferons (IFNs), and tumor necrosis factor-alpha (TNF-α) to activate inflammatory pathways and combat tumors. Since cytokines have significant pleiotropic effects, their therapeutic use is difficult and may cause excessive systemic inflammation or immunological suppression. This review covers current advancements in synthetic cytokines, cytokine-conjugates, and local administration of these aimed to enhance the therapeutic index: increase the potential to kill cancer cells while minimizing off-target damage. The study examines the relationship between cytokines and tumor microenvironment (TME), revealing the role of immunosuppressive cytokines like IL-10 and transforming growth factor-beta (TGF-β) in promoting an immune-evasive phenotype. These results suggest that inhibitory pathway targeting, and cytokine-based therapy may overcome resistance mechanisms. Cytokine-based immunotherapies combined with immune checkpoint inhibitors are predicted to change gastric cancer therapy and rebuild tumor-immune microenvironment dynamics, restoring antitumor immunity. Comprehensive data from current clinical studies will assist in establishing the position of these treatments in gastric cancer.
Collapse
Affiliation(s)
- Mathan Muthu Chinakannu Marimuthu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Bhavani Sowndharya Balamurugan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Vickram Agaram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Saravanan Anbalagan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
7
|
Martin-Broto J, Moura DS, Hindi N. Which sarcoma requires PD1/PDL1 inhibitors, and what should be the best scheme? Present status and next steps. Curr Opin Oncol 2025:00001622-990000000-00254. [PMID: 40421971 DOI: 10.1097/cco.0000000000001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
PURPOSE OF REVIEW The introduction of immune checkpoint inhibitors (ICI) in advanced sarcoma has been largely disappointing due to their "cold" tumor microenvironment, characterized by low tumor mutational burden, scarce CD8+ T-cell infiltration, and minimal expression of PD-1/PD-L1. However, recent findings highlight several scenarios in which immune checkpoint blockade exhibits clinical efficacy. RECENT FINDINGS ICIs have shown durable efficacy in specific sarcoma subtypes, such as alveolar soft part sarcoma (ASPS), with objective response rates (ORR) exceeding 35% and 50%, in monotherapy or in combination, respectively. Doxorubicin-based regimens plus ICIs have yielded notorious and higher ORRs in the most common sarcoma subtypes, than historical chemotherapy data. Neoadjuvant radiation therapy combined with ICIs has significantly improved disease-free survival in localized selected soft tissue sarcomas. SUMMARY Immunotherapy targeting immune checkpoints in sarcomas is evolving, with recent findings highlighting its potential. Single-arm trials underscore the efficacy of ICIs in rare sarcomas, exemplified by the FDA approval of atezolizumab for ASPS. Combination strategies are proving more effective than chemotherapy alone, with ongoing comparative studies assessing chemo-immunotherapy in both metastatic and localized sarcomas. Advances in predictive biomarkers could expand the clinical use of ICIs.
Collapse
Affiliation(s)
- Javier Martin-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital; University Hospital General de Villalba, and Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM)
| | - David S Moura
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM) and University Hospital General de Villalba, Madrid, Spain
| | - Nadia Hindi
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital; University Hospital General de Villalba, and Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD; UAM)
| |
Collapse
|
8
|
Zhao W, Gao W, Du J, Li D, Liu X, Chang Z, Chen P, Sun X, Zhao Y, Jiao H, Wan X, Dong G. Comparison of immunotherapy based total neoadjuvant therapy or standard neoadjuvant chemoradiation for locally advanced rectal cancer: a multi-institutional retrospective study. Front Immunol 2025; 16:1513716. [PMID: 40297574 PMCID: PMC12034688 DOI: 10.3389/fimmu.2025.1513716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Combining radiation therapy with immunotherapy produces a synergistic effect in patients with microsatellite stable/mismatch repair-proficient (MSS/pMMR) locally advanced rectal cancer (LARC). This study aimed to evaluate the long-term outcomes and safety of immunotherapy combined with long-course chemoradiotherapy (ICIs + nCRT) versus immunotherapy combined with total neoadjuvant therapy (ICIs + TNT). Methods This retrospective study collected clinical data of adult patients with clinical T3-4 and/or N1 rectal adenocarcinoma who underwent ICIs + TNT or ICIs + nCRT followed by curative surgery at four medical centers between March 2020 and August 2021. The study compared clinical efficacy, disease-free survival (DFS), overall survival (OS) at 3 years postoperatively, and adverse event. Results Among 211 enrolled patients, 89 (42%) received ICIs + TNT, while 122 (58%) underwent ICIs + nCRT, with a median age of 56.0 years (range, 20.0-75.0 years). The ICIs + TNT group had a higher median number of resected lymph nodes (15.0 [range, 4.0-37.0] vs. 13.0 [range, 3.0-33.0], P=0.028) compared to the ICIs+nCRT group. However, the groups had no substantial difference in median operative time. The pathological complete response (pCR) rate was 49.4% (44/89, 95% confidence interval [CI] 39.8%-61.3%) in the ICIs + TNT group compared to 35.3% (43/122, 95% CI 26.8%-44.4%) in the ICIs + nCRT group, respectively, with significant difference (P=0.039). After adjusting for potential confounders, the 3-year DFS rates were comparable between the two groups (84.3% vs. 81.9%; P=0.620), as were the OS rates (94.0% vs. 91.1%; P=0.634). Factors independently associated with poorer DFS included age ≤50 years (P=0.044) and a neoadjuvant rectal (NAR) score ≥8 (P=0.008). Similarly, patients aged ≤50 years (P=0.025) exhibited a trend toward worse OS than those older than 50 years. The safety profiles of the two treatment groups were similar. Conclusions Overall, ICIs + TNT demonstrated therapeutic efficacy and a safety profile comparable to ICIs + nCRT in patients with LARC and MSS/pMMR status. Although ICIs + TNT achieved numerically higher downstaging rates, it was not associated with improved survival outcomes. These findings underscore the importance of refining patient selection criteria and making judicious treatment decisions to enhance the prognosis of individuals with rectal cancer.
Collapse
Affiliation(s)
- Wen Zhao
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jitao Du
- Department of General Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingchang Li
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xianqiang Liu
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhengyao Chang
- Department of General Surgery, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Sun
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhao
- Department of General Surgery, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hanqing Jiao
- Department of General Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangbin Wan
- Department of General Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanglong Dong
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Gao Q, Wu H, Li Z, Yang Z, Li L, Sun X, Wu Q, Sui X. Synergistic Strategies for Lung Cancer Immunotherapy: Combining Phytochemicals and Immune-Checkpoint Inhibitors. Phytother Res 2025. [PMID: 40122686 DOI: 10.1002/ptr.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 03/25/2025]
Abstract
Lung cancer remains one of the most widespread and deadliest malignant tumors globally, with a particularly high mortality rate among all cancers. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a crucial treatment strategy for lung cancer patients, following surgical intervention, radiotherapy, chemotherapy, and targeted drug therapies. However, the therapeutic limitations are caused owing to their low response rate and undesirable side effects such as immune-related pneumonitis. Therefore, developing new strategies to improve the efficacy of ICIs while minimizing immune-related adverse events will be crucial for cancer immunotherapy. The tumor immune microenvironment plays a significant role in the success of lung cancer immunotherapy, and the immunosuppressive characteristics of the immune microenvironment are one of the major obstacles to the poor immunotherapeutic effect. Phytochemicals, naturally occurring compounds in plants, have shown promise in enhancing cancer immunotherapy by remodeling the immunosuppressive microenvironment, offering the potential to increase the efficacy of ICIs. Therefore, this review summarizes the associated mechanisms of phytochemicals remodeling the immunosuppressive microenvironment in lung cancer. Additionally, the review will focus on the synergistic effects of combining phytochemicals with ICIs, aiming to improve anticancer efficacy and reduce side effects, which may hopefully offer novel strategies to overcome current limitations in immunotherapy.
Collapse
Affiliation(s)
- Quan Gao
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Hao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Yang
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Lin Li
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Xueni Sun
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Qibiao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xinbing Sui
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
10
|
Lakshmanachetty S, Riemondy K, Sanford B, Donson A, Balakrishnan I, Prince E, Hankinson T, Dahl N, Vibhakar R, Foreman NK, Venkataraman S, Mitra SS. Differential Phagocytosis induces Diverse Macrophage Activation States in Malignant Gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.642920. [PMID: 40166298 PMCID: PMC11957070 DOI: 10.1101/2025.03.15.642920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Diffuse midline glioma (DMG) and Glioblastoma are malignant brain tumors in pediatric and adult patients. The current standard-of-care treatment for DMG is radiotherapy (RT), whereas GBM treatment includes surgery, followed by RT and chemotherapy. Although RT is known to modulate immune responses in cancer and enhance the effectiveness of myeloid checkpoint blockade, the downstream macrophage responses to differential phagocytosis induction remain poorly understood. This study examined macrophage-mediated phagocytosis caused by either RT, anti-CD47 checkpoint blockade, or their combination. We found that RT increased the expression of several damage-associated molecular patterns on the surface of glioma cell lines. Furthermore, RT enhanced anti-CD47-mediated macrophage phagocytosis of glioma cell lines in vitro . Single-cell RNA-sequencing revealed the diverse transcriptional and functional signatures of human macrophage subsets that either promoted or inhibited phagocytosis of glioma cells pretreated with RT, anti-CD47 therapy, or both. Consistent with these results, the combination therapy significantly reduced tumor growth, prolonged survival in glioma-bearing mice, and induced distinct macrophage activation states in vivo compared to either treatment alone. These findings highlight the plasticity and heterogeneity of macrophage responses during phagocytosis and provide compelling evidence for combining RT with anti-CD47 therapy as a promising therapeutic strategy for glioma treatment.
Collapse
|
11
|
Wang H, Liu C, Jiang C, Zhang Y, Zhao X, Jia Z, Huo J, Yang J. GRHL3 drives radiotherapy resistance and blocks the anti-tumor response of NK and CD4 + T cells in lung squamous cell carcinoma via RNF2. Biochem Pharmacol 2025; 233:116784. [PMID: 39880318 DOI: 10.1016/j.bcp.2025.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor. GRHL3 expression was overexpressed in radioresistant cells relative to parental cells, and the knockdown of GRHL3 conferred sensitivity to radioresistant LUSC cells, induced DNA damage, inhibited cell survival, and reduced tumor load in mice. GRHL3 promoted ring finger protein 2 (RNF2) transcription by binding to the RNF2 promoter. GRHL3 induced a radioresistant phenotype in parental cells and led to compromised anti-tumor immune responses of CD4+ T cells and NK cells. The GRHL3-promoted tumor progression was reversed by the knockdown of RNF2. The DNA methylation of GRHL3 was reduced in radioresistant cells. All in all, as GRHL3, helps LUSC cells escape from the immune surveillance and mediates radioresistance, it might be an attractive target for therapy-resistant LUSC.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai 054000 Hebei, PR China
| | - Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Chao Jiang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Yunjie Zhang
- Department of Surgical Oncology, Handan Central Hospital, Handan 056000 Hebei, PR China
| | - Xin Zhao
- School of Clinical Sciences, Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Zhongfei Jia
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Jingchen Huo
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China.
| |
Collapse
|
12
|
Cao Z, Deng K, Jiang J, Tian K, Wang B. Combined treatment of small cell lung cancer using radiotherapy and immunotherapy: Challenges and updates. Biomed Pharmacother 2025; 182:117727. [PMID: 39675137 DOI: 10.1016/j.biopha.2024.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Currently, chemotherapy remains the standard first- and second-line treatment for small cell lung cancer (SCLC). Research concerning immunotherapy has brought about a remarkable development in the treatment pattern of SCLC. Atirizumab, duvalizumab, atezolizumab, and serplulimab can significantly improve the clinical outcomes of SCLC. Given the rapidly evolving concept that combining immunotherapy with radiotherapy can increase therapeutic effectiveness, clinicians are devoted to further improving local tumor control by integrating immunotherapy with radiotherapy. This paper reviews the research progress in this field to date and explores ways to further enhance the efficacy of this combination therapy. We first discussed that immunotherapy combined with radiotherapy can improve the abscopal effect, progression-free survival, and overall survival rates of SCLC patients. Then, the biomarkers related to the radiation immune microenvironment, such as programmed death ligand-1 (PD-L1), tumor mutational burden (TMB), and the immune function of patients were discussed. Next, we explored the occurrence and underlying mechanisms of immune resistance during radiotherapy implementation. Finally, we clarified that the emerging trend of low-dose radiotherapy help overcome the inhibitory signals that limit T-cell infiltration in the tumor matrix. In summary, considering the rapid development of this field, these combined therapy strategies may have unlimited potential to further improve the efficacy of radiotherapy combined with immunotherapy for patients.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China.
| | - Kai Deng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400061, China.
| | - Jinxiu Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400061, China.
| | - Ke Tian
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China.
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China.
| |
Collapse
|
13
|
Dou L, Fang Y, Yang H, Ai G, Shen N. Immunogenic cell death: A new strategy to enhancing cancer immunotherapy. Hum Vaccin Immunother 2024; 20:2437918. [PMID: 39655738 PMCID: PMC11639453 DOI: 10.1080/21645515.2024.2437918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to adaptive immune responses and the establishment of immunological memory. ICD exhibits both similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial considerations in the treatment of cancer within the context of immunotherapy. To enhance comprehension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic potential of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Hong S, Park J, Oh Y, Cho H, Kim K. Nanotechnology-Based Strategies for Safe and Effective Immunotherapy. Molecules 2024; 29:5855. [PMID: 39769944 PMCID: PMC11676242 DOI: 10.3390/molecules29245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer immunotherapy using immune checkpoint blockades has emerged as a promising therapeutic approach. However, immunotherapy faces challenges such as low response rates in solid tumors, necessitating strategies to remodel the immune-suppressive tumor microenvironment (TME) into an immune-activated state. One of the primary approaches to achieve this transformation is through the induction of immunogenic cell death (ICD). Herein, we discussed strategies to maximize ICD induction using nanoparticles. In particular, this review highlighted various studies integrating chemotherapy, radiation therapy (RT), photodynamic therapy (PDT), and photothermal therapy (PTT) with nanoparticle-based immunotherapy. The research covered in this review aims to provide valuable insights for future studies on nanoparticle-assisted immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (S.H.); (J.P.); (Y.O.); (H.C.)
| |
Collapse
|
15
|
Wu F, Xu Y. Immunogenic cell death-related cancer-associated fibroblast clusters and prognostic risk model in cervical cancer. APL Bioeng 2024; 8:046114. [PMID: 39691350 PMCID: PMC11650426 DOI: 10.1063/5.0240772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
Cervical cancer (CC) remains a leading cause of female cancer mortality globally. Immunogenic cell death (ICD) influences the tumor microenvironment (TME) and adaptive immune responses. Cancer-associated fibroblasts (CAFs) within the TME suppress anti-tumor immunity and contribute to CC progression. This study identified three ICD-related CAF clusters linked to patient survival, including IL6+CAF and ILR1+CAF, which were associated with clinical outcomes. Using a nine-gene risk model, patients were stratified into risk groups, with high-risk individuals showing worse survival and correlations with pathways such as hypoxia and TGFβ. The model also predicted immunotherapy responses, highlighting immune infiltration differences across risk groups. These findings provide insights into the role of CAF clusters in CC and present a risk model that supports prognosis prediction and personalized therapy.
Collapse
Affiliation(s)
- Fei Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yue Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
16
|
Harmak Z, Kone AS, Ghouzlani A, Ghazi B, Badou A. Beyond Tumor Borders: Intratumoral Microbiome Effects on Tumor Behavior and Therapeutic Responses. Immune Netw 2024; 24:e40. [PMID: 39801738 PMCID: PMC11711125 DOI: 10.4110/in.2024.24.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
The human body contains a diverse array of microorganisms, which exert a significant impact on various physiological processes, including immunity, and can significantly influence susceptibility to various diseases such as cancer. Recent advancements in metagenomic sequencing have uncovered the role of intratumoral microbiome, which covertly altered the development of cancer, the growth of tumors, and the response to existing treatments through multiple mechanisms. These mechanisms involve mainly DNA damage induction, oncogenic signaling pathway activation, and the host's immune response modulation. To explore novel therapeutic options and effectively target and regulate the intratumoral microbiome, a comprehensive understanding of these processes is indispensable. Here, we will explore various potential actions of the intratumoral microbiome concerning the initiation and progression of tumors. We will examine its impact on responses to chemotherapy, radiotherapy, and immunotherapy. Additionally, we will discuss the current state of knowledge regarding the use of genetically modified bacteria as a promising treatment option for cancer.
Collapse
Affiliation(s)
- Zakia Harmak
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Abdou-Samad Kone
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Bouchra Ghazi
- Immunopathology-Immunomonitoring-Immunotherapy Laboratory, Faculty of Medicine, Mohammed IV University of Sciences and Health, Casablanca 82403, Morocco
- IVF Laboratory, Department of Reproductive Medicine, Mohammed VI International University Hospital, Bouskoura 27182, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| |
Collapse
|
17
|
Yang F. The integration of radiotherapy with systemic therapy in advanced triple-negative breast cancer. Crit Rev Oncol Hematol 2024; 204:104546. [PMID: 39476993 DOI: 10.1016/j.critrevonc.2024.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with high aggressiveness and poor prognosis. For patients who have undergone multiple treatments, systemic drug therapy often presents challenges with limited efficacy and significant side effects. Radiotherapy, a pivotal local treatment, has shown substantial local control benefits in patients with inoperable locally advanced or metastatic disease. Clinical evidence suggests that integrating systemic therapy with locoregional radiotherapy can confer survival advantages in advanced malignancies. Within multidisciplinary treatment, the synergy between radiotherapy and systemic therapies shows promise for enhancing outcomes and extending survival. This review synthesizes recent advances in combining radiotherapy and systemic therapy in managing advanced TNBC, focusing on preclinical and clinical evidence regarding efficacy and safety. By reviewing these advancements, we aim to identify novel therapeutic strategies and integrate clinical evidence to inform best practices in TNBC management, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
18
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
19
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
20
|
Zhang Y, Liu Y, Li T, Yang X, Lang S, Pei P, Pei H, Chang L, Hu L, Liu T, Yang K. Engineered bacteria breach tumor physical barriers to enhance radio-immunotherapy. J Control Release 2024; 373:867-878. [PMID: 39097194 DOI: 10.1016/j.jconrel.2024.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Radiotherapy widely applied for local tumor therapy in clinic has been recently reinvigorated by the discovery that radiotherapy could activate systematic antitumor immune response. Nonetheless, the endogenous radio-immune effect is still incapable of radical tumor elimination due to the prevention of immune cell infiltration by the physical barrier in tumor microenvironment (TME). Herein, an engineered Salmonella secreting nattokinase (VNPNKase) is developed to synergistically modulate the physical and immune characteristics of TME to enhance radio-immunotherapy of colon tumors. The facultative anaerobic VNPNKase enriches at the tumor site after systemic administration, continuously secreting abundant NKase to degrade fibronectin, dredge the extracellular matrix (ECM), and inactivate cancer-associated fibroblasts (CAFs). The VNPNKase- dredged TME facilitates the infiltration of CD103+ dendritic cells (DCs) and thus the presentation of tumor-associated antigens (TAAs) after radiotherapy, recruiting sufficient CD8+ T lymphocytes to specifically eradicate localized tumors. Moreover, the pre-treatment of VNPNKase before radiotherapy amplifies the abscopal effect and achieves a long-term immune memory effect, preventing the metastasis and recurrence of tumors. Our research suggests that this strategy using engineered bacteria to breach tumor physical barrier for promoting immune cell infiltration possesses great promise as a translational strategy to enhance the effectiveness of radio-immunotherapy in treating solid tumors.
Collapse
Affiliation(s)
- Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xulu Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shanshan Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Department of Pathology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
21
|
Ranawat P, Sharma B, Singh P, Kaur T. Exploring Cancer Immunotherapy and the Promise of Cancer Vaccine. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:265-310. [DOI: 10.4018/979-8-3693-3976-3.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The goal of immunotherapy is to enhance the immune system by managing the immunological-mediated microenvironment, which makes it possible for immune cells to locate and destroy tumour cells at vital nodes. In the tumor microenvironment, immune responses against tumour cells are reduced when these cells take up immune-regulatory mechanisms. An environment that suppresses the immune system is facilitated by immune cells, including regulatory T cells, regulatory B cells, dendritic cells, and myeloid-derived suppressor cells. In a number of cancer types, adoptive immune cells and immune checkpoint modulators have shown impressive anticancer benefits. Tumour growth is facilitated in large part by immune cells found in the tumour microenvironment (TME). Tumour growth may be stimulated or inhibited by these cells. The ability of the immune system to elude detection by cancer cells offers new possibilities for innovative cancer treatment strategies.
Collapse
|
22
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
23
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
24
|
Bhattacharya S, Paraskar G, Jha M, Gupta GL, Prajapati BG. Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations. ACS Pharmacol Transl Sci 2024; 7:2215-2236. [PMID: 39144553 PMCID: PMC11320738 DOI: 10.1021/acsptsci.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient's TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Gaurav Paraskar
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
- Faculty
of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
25
|
Amit U, Uslu U, Verginadis II, Kim MM, Motlagh SAO, Diffenderfer ES, Assenmacher CA, Bicher S, Atoche SJ, Ben-Josef E, Young RM, June CH, Koumenis C. Proton radiation boosts the efficacy of mesothelin-targeting chimeric antigen receptor T cell therapy in pancreatic cancer. Proc Natl Acad Sci U S A 2024; 121:e2403002121. [PMID: 39047033 PMCID: PMC11294999 DOI: 10.1073/pnas.2403002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents a challenge in oncology, with limited treatment options for advanced-stage patients. Chimeric antigen receptor T cell (CAR T) therapy targeting mesothelin (MSLN) shows promise, but challenges such as the hostile immunosuppressive tumor microenvironment (TME) hinder its efficacy. This study explores the synergistic potential of combining proton radiation therapy (RT) with MSLN-targeting CAR T therapy in a syngeneic PDAC model. Proton RT significantly increased MSLN expression in tumor cells and caused a significant increase in CAR T cell infiltration into tumors. The combination therapy reshaped the immunosuppressive TME, promoting antitumorigenic M1 polarized macrophages and reducing myeloid-derived suppressor cells (MDSC). In a flank PDAC model, the combination therapy demonstrated superior attenuation of tumor growth and improved survival compared to individual treatments alone. In an orthotopic PDAC model treated with image-guided proton RT, tumor growth was significantly reduced in the combination group compared to the RT treatment alone. Further, the combination therapy induced an abscopal effect in a dual-flank tumor model, with increased serum interferon-γ levels and enhanced proliferation of extratumoral CAR T cells. In conclusion, combining proton RT with MSLN-targeting CAR T therapy proves effective in modulating the TME, enhancing CAR T cell trafficking, and exerting systemic antitumor effects. Thus, this combinatorial approach could present a promising strategy for improving outcomes in unresectable PDAC.
Collapse
Affiliation(s)
- Uri Amit
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiation Oncology, Tel Aviv Medical Center, Tel Aviv64239, Israel
| | - Ugur Uslu
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Ioannis I. Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, Comparative Pathology Core, University of Pennsylvania, Philadelphia, PA19104
| | - Sandra Bicher
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Sebastian J. Atoche
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Edgar Ben-Josef
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Regina M. Young
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Carl H. June
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
26
|
Jiao JZ, Zhang Y, Zhang WJ, He MD, Meng M, Liu T, Ma QL, Xu Y, Gao P, Chen CH, Zhang L, Pi HF, Deng P, Wu YZ, Zhou Z, Yu ZP, Deng YC, Lu YH. Radiofrequency radiation reshapes tumor immune microenvironment into antitumor phenotype in pulmonary metastatic melanoma by inducing active transformation of tumor-infiltrating CD8 + T and NK cells. Acta Pharmacol Sin 2024; 45:1492-1505. [PMID: 38538718 PMCID: PMC11192955 DOI: 10.1038/s41401-024-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 06/23/2024]
Abstract
Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Jia-Zheng Jiao
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Radiation Biology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wen-Juan Zhang
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Min-di He
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Tao Liu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Qin-Long Ma
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ya Xu
- Radiation Biology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Peng Gao
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Chun-Hai Chen
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Lei Zhang
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Hui-Feng Pi
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ping Deng
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zheng-Ping Yu
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - You-Cai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yong-Hui Lu
- Key Laboratory for Electromagnetic Radiation Medical Protection of Ministry of Education, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
27
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Li R, Zhao W, Han Z, Feng N, Wu T, Xiong H, Jiang W. Self-Cascade Nanozyme Reactor as a Cuproptosis Inducer Synergistic Inhibition of Cellular Respiration Boosting Radioimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306263. [PMID: 38221757 DOI: 10.1002/smll.202306263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Intrinsic or acquired radioresistance remained an important challenge in the successful management of cancer. Herein, a novel "smart" multifunctional copper-based nanocomposite (RCL@Pd@CuZ) to improve radiotherapy (RT) sensitivity is designed and developed. In this nanoplatform, DSPE-PEG-RGD modified on the liposome surface enhanced tumor targeting and permeability; capsaicin inserted into the phospholipid bilayer improved the hypoxic conditions in the tumor microenvironment (TME) by inhibiting mitochondrial respiration; a Cu MOF porous cube encapsulated in liposome generated highly active hydroxyl radicals (OH·), consumed GSH and promoted cuproptosis by releasing Cu2+; the ultrasmall palladium (Pd) nanozyme within the cubes exhibited peroxidase activity, catalyzing toxic OH· generation and releasing oxygen from hydrogen peroxide; and lastly, Pd, as an element with a relatively high atomic number (Z) enhanced the photoelectric and Compton effects of X-rays. Therefore, RCL@Pd@CuZ enhance RT sensitivity by ameliorating hypoxia, promoting cuproptosis, depleting GSH, amplifying oxidative stress, and enhancing X-ray absorption , consequently potently magnifying immunogenic cell death (ICD). In a mouse model , RCL@Pd@CuZ combined with RT yielded >90% inhibition compared with that obtained by RT alone in addition to a greater quantity of DC maturation and CD8+ T cell infiltration. This nanoplatform offered a promising remedial modality to facilitate cuproptosis-related cancer radioimmunotherapy.
Collapse
Affiliation(s)
- Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
- Department of Respiratory Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Jinshui, Zhengzhou, 450008, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhuo Han
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an, 710000, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Wu
- Nanozyme Medical Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wei Jiang
- Nanozyme Medical Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
29
|
Aleksandrovic E, Zhang S, Yu D. From pre-clinical to translational brain metastasis research: current challenges and emerging opportunities. Clin Exp Metastasis 2024; 41:187-198. [PMID: 38430319 PMCID: PMC11456321 DOI: 10.1007/s10585-024-10271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Brain metastasis, characterized by poor clinical outcomes, is a devastating disease. Despite significant mechanistic and therapeutic advances in recent years, pivotal improvements in clinical interventions have remained elusive. The heterogeneous nature of the primary tumor of origin, complications in drug delivery across the blood-brain barrier, and the distinct microenvironment collectively pose formidable clinical challenges in developing new treatments for patients with brain metastasis. Although current preclinical models have deepened our basic understanding of the disease, much of the existing research on brain metastasis has employed a reductionist approach. This approach, which often relies on either in vitro systems or in vivo injection models in young and treatment-naive mouse models, does not give sufficient consideration to the clinical context. Given the translational importance of brain metastasis research, we advocate for the design of preclinical experimental models that take into account these unique clinical challenges and align more closely with current clinical practices. We anticipate that aligning and simulating real-world patient conditions will facilitate the development of more translatable treatment regimens. This brief review outlines the most pressing clinical challenges, the current state of research in addressing them, and offers perspectives on innovative metastasis models and tools aimed at identifying novel strategies for more effective management of clinical brain metastasis.
Collapse
Affiliation(s)
- Emilija Aleksandrovic
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX, 75235, USA
| | - Siyuan Zhang
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX, 75235, USA.
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Tam A, Ladbury C, Kassardjian A, Modi B, McGee H, Melstrom L, Margolin K, Xing Y, Amini A. Combined Regional Approach of Talimogene laherparepvec and Radiotherapy in the Treatment of Advanced Melanoma. Cancers (Basel) 2024; 16:1951. [PMID: 38893072 PMCID: PMC11171111 DOI: 10.3390/cancers16111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Talimogene laherparepvec (TVEC) is a genetically modified oncolytic herpes simplex virus (HSV-1) that is used for the intralesional treatment of advanced or metastatic melanoma. Given that TVEC produces the granulocyte-macrophage colony-stimulating factor (GM-CSF), recent reports have suggested that radiation treatment (RT) given in conjunction with TVEC may provide synergistic immune activation at the site, and possibly systemically. However, studies on combining RT with TVEC remain limited. We conducted a retrospective review of melanoma patients from a single cancer center who received TVEC and RT in the same region of the body and compared them to patients who received TVEC with RT at another site (other than the site of TVEC injection). Between January 2015 and September 2022, we identified twenty patients who were treated with TVEC and RT; fourteen patients received TVEC and RT in the same region, and six had treatments in separate regions. Regions were determined at the time of analysis and were based on anatomic sites (such as arm, leg, torso, etc.). Kaplan-Meier analysis of progression-free survival (PFS), analyses of time to distant metastasis (DM), overall survival (OS), and locoregional control (LRC), and the corresponding log-rank test were performed. With a median follow-up of 10.5 months [mos] (range 1.0-58.7 mos), we found an improvement in PFS with TVEC and RT in the same region compared to different regions, which were 6.4 mos (95% CI, 2.4-NR mos) and 2.8 mos (95% CI, 0.7-4.4 mos), respectively; p = 0.005. There was also a significant improvement in DM when TVEC and RT were used in the same region compared to different regions: 13.8 mos (95% CI, 4.6-NR mos) and 2.8 mos (95% CI, 0.7-4.4 mos), respectively (p = 0.001). However, we found no difference in overall survival (OS) between patients who had TVEC and RT in the same region (19.0 mos, 95% confidence interval [CI], 4.1-not reached [NR] mos) and those who received treatments in different regions (18.5 mos, 95% CI, 1.0-NR mos); p = 0.366. There was no statistically significant improvement in locoregional control (LRC) in patients who had TVEC and RT in the same region was 26.0 mos (95% CI, 6.4-26.0 mos) compared to patients who received TVEC and RT in different regions (4.4 mos) (95% CI, 0.7-NR mos) (p = 0.115). No grade 3 or higher toxicities were documented in either group. Overall, there were improvements in PFS and DM when TVEC and RT were delivered to the same region of the body compared to when they were used in different regions. However, we did not find a significant difference in locoregional recurrence or OS. Future studies are needed to assess the sequence and timing of combining RT and TVEC to potentially enhance the immune response both locally and distantly.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Colton Ladbury
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Ari Kassardjian
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Badri Modi
- Department of Dermatology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Heather McGee
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| | - Laleh Melstrom
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Kim Margolin
- St. John’s Cancer Institute, 2121 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Yan Xing
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.)
| |
Collapse
|
31
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
32
|
Manzar GS, Alam MBE, Lynn EJ, Karpinets TV, Harris T, Lo D, Yoshida-Court K, Napravnik TC, Sammouri J, Lin D, Andring LM, Bronk J, Wu X, Sims TT, Mathew G, Schmeler KM, Eifel PJ, Jhingran A, Lin LL, Joyner MM, Zhang J, Futreal A, Klopp AH, Colbert LE. Exploratory analysis of the cervix tumoral HPV antigen-specific T-cell repertoire during chemoradiation and after brachytherapy. Brachytherapy 2024; 23:123-135. [PMID: 38129211 DOI: 10.1016/j.brachy.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Chemoradiation (CRT) may modulate the immune milieu as an in-situ vaccine. Rapid dose delivery of brachytherapy has unclear impact on T-cell repertoires. HPV-associated cancers express viral oncoproteins E6/E7, which enable tracking antigen/tumor-specific immunity during CRT. METHODS Thirteen cervical cancer patients on a multi-institutional prospective protocol from 1/2020-1/2023 underwent standard-of-care CRT with pulsed-dose-rate brachytherapy boost (2 fractions). Cervix swabs at various timepoints underwent multiplex DNA deep sequencing of the TCR-β/CDR3 region with immunoSEQ. Separately, HPV-responsive T-cell clones were also expanded ex vivo. Statistical analysis was via Mann-Whitney-U. RESULTS TCR productive clonality, templates, frequency, or rearrangements increased post-brachytherapy in 8 patients. Seven patients had E6/E7-responsive evolution over CRT with increased productive templates (ranges: 1.2-50.2 fold-increase from baseline), frequency (1.2-1.7), rearrangements (1.2-40.2), and clonality (1.2-15.4). Five patients had HPV-responsive clonal expansion post-brachytherapy, without changes in HPV non-responsive clones. Epitope mapping revealed VDJ rearrangements targeting cervical cancer-associated antigens in 5 patients. The only two patients with disease recurrence lacked response in all metrics. A lack of global TCR remodeling correlated with worse recurrence-free survival, p = 0.04. CONCLUSION CRT and brachytherapy alters the cervical cancer microenvironment to facilitate the expansion of specific T-cell populations, which may contribute to treatment efficacy.
Collapse
Affiliation(s)
- Gohar S Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Timothy Harris
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David Lo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren M Andring
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Julianna Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Travis T Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lilie L Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa M Joyner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
33
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
34
|
Aimi H, Murai T, Takino K, Naito W, Miura I, Hata M, Inoue T, Omura M. A Unique Adverse Event of Radiotherapy in a Patient With IgG4-related Disease: A Case Report. In Vivo 2023; 37:2840-2844. [PMID: 37905644 PMCID: PMC10621432 DOI: 10.21873/invivo.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM IgG4-related disease (IgG4RD) is a rare autoimmune proinflammatory condition that mimics other cancers and has unique pathological findings. The effects of radiotherapy in patients with IgG4RD remain unknown. CASE REPORT A male patient in his seventies who received radiotherapy (68 Gy/39 fr) for bladder cancer 5 months prior, presented to our hospital with fatigue and swelling in both legs. The patient had a history of IgG4-related sclerosing cholangitis, a subtype of IgG4RD. Leg edema gradually worsened despite treatment with a diuretic agent. Computed tomography showed hyperdense soft-tissue lesions in the irradiated area. The serum level of IgG4 increased to 1,380 mg/dl. One month after administration of a corticosteroid (10 mg per day) as an ex juvantibus treatment for IgG4RD, leg edema disappeared. Soft-tissue lesions in the irradiated area decreased in size. The adverse event was ultimately diagnosed as the recurrence of IgG4RD in the irradiated area. To the best of our knowledge, this is the first case report of an adverse event of radiotherapy for a patient with IgG4RD. CONCLUSION We experienced a unique adverse event of radiotherapy in a patient with IgG4RD. Caution is advised on radiotherapy administration in patients with IgG4RD.
Collapse
Affiliation(s)
- Hisao Aimi
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Taro Murai
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan;
| | - Kazuki Takino
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Wataru Naito
- Department of Pathology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Ichiro Miura
- Department of Urology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Masaharu Hata
- Department of Radiation Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
35
|
Zhang S, Huang Y, Pi S, Chen H, Ye F, Wu C, Li L, Ye Q, Lin Y, Su Z. Autophagy-amplifying nanoparticles evoke immunogenic cell death combined with anti-PD-1/PD-L1 for residual tumors immunotherapy after RFA. J Nanobiotechnology 2023; 21:360. [PMID: 37789342 PMCID: PMC10548684 DOI: 10.1186/s12951-023-02067-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Incomplete radiofrequency ablation (IRFA) triggers mild protective autophagy in residual tumor cells and results in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and causes resistance to anti-PD-1/PDL1 therapy, which bringing a great clinical challenge in residual tumors immunotherapy. Mild autophagy activation can promote cancer cell survival while further amplification of autophagy contributes to immunogenic cell death (ICD). To this regard, we constructed active targeting zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) loaded with STF62247 or both STF62247 and BMS202, namely STF62247@ZIF-8/PEG-FA (SZP) or STF62247-BMS202@ZIF-8/PEG-FA (SBZP) NPs. We found that SZP NPs inhibited proliferation and stimulated apoptosis of residual tumor cells exposed to sublethal heat stress in an autophagy-dependent manner. Further results discovered that SZP NPs could amplify autophagy in residual tumor cells and evoke their ICD, which dramatically boosted the maturation of dendritic cells (DCs). Through vaccination experiments, we found for the first time that vaccination with heat + SZP treatment could efficiently suppress the growth of new tumors and establish long-term immunological memory. Furthermore, SBZP NPs could remarkably promote the ICD of residual tumor cells, obviously activate the anti-tumor immune microenvironment, and significantly inhibit the growth of residual tumors. Thus, amplified autophagy coupled with anti-PD-1/PDL1 therapy is potentially a novel strategy for treating residual tumors after IRFA.
Collapse
Affiliation(s)
- Shushan Zhang
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Songying Pi
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Hui Chen
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Feile Ye
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Chaoqun Wu
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Liujun Li
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Qing Ye
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China
| | - Yuhong Lin
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China.
| | - Zhongzhen Su
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Meihua East Road, No. 52, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
36
|
Hu G, Xiao Y, Ma C, Wang J, Qian X, Wu X, Zhu F, Sun S, Qian J. Lumican is a potential predictor on the efficacy of concurrent chemoradiotherapy in cervical squamous cell carcinoma. Heliyon 2023; 9:e18011. [PMID: 37483824 PMCID: PMC10362307 DOI: 10.1016/j.heliyon.2023.e18011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose To identify new novel biomarkers for predicting the efficacy of concurrent chemoradiotherapy(CCRT) in cervical squamous cell carcinoma(CESC). Methods Gene expression datasets GSE56363, GSE5787, and GSE168009 were analyzed to identify candidate genes to predict the efficacy of CCRT in CESC. Single-cell RNA sequencing (scRNA-seq) data from GSE168652 and CESC patients in The Cancer Genome Atlas(TCGA) were systematically analyzed to explore possible molecular mechanisms. Kaplan-Meier evaluated the correlation between LUM (Lumican) and prognostic significance. The expression of LUM protein in biopsy tissues before CCRT was detected by immunohistochemistry in 15 CESC patients. Results LUM mRNA levels were significantly upregulated in nonresponders of CESC.patients receiving CCRT and positively correlated with poor therapeutic effect. Furthermore, high expression of LUM influenced the immune microenvironment in CESC patient-derived organoids treated with CCRT. LUM overexpression in CESC cells induced resistance to CCRT, potentially via immune landscape modulation. Gene Set Enrichment Analysis (GSEA) revealed that possible mechanisms underlying resistance to CCRT might involve the PARs and IL1 signaling pathway affecting the immune landscape. Conclusions High LUM expression is correlated with poor efficacy in CESC patients receiving CCRT, possibly through the PARs and IL1 signaling pathway affecting the immune landscape.
Collapse
Affiliation(s)
- Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Ying Xiao
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, PR China
| | - Chanchan Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230031, PR China
| | - Jinyun Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Xiaotao Qian
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Xiaowei Wu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Fengqin Zhu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| | - Shiying Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230031, PR China
| | - Junchao Qian
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei,230031, PR China
| |
Collapse
|