1
|
Michel K, Ioerger NM, Ake AM, Hettenbach SM, Olds C, Pendell DL, Stack J, Higgs S, Vanlandingham DL. Understanding the Burden of Agriculturally Significant Vector-Borne and Parasitic Diseases in Kansas. Vector Borne Zoonotic Dis 2025. [PMID: 40285460 DOI: 10.1089/vbz.2025.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
Background: The state of Kansas (KS) has been called the "agricultural heartland" of the United States. Vector-borne and parasitic diseases (VBPD) have a major impact on the production of livestock, such as cattle, swine, goats and sheep, as well as crops, such as wheat, corn, and sorghum. The purpose of this review is to educate agricultural professionals in the state of KS about VBPD of current or potential concern and to inform the public about the challenges faced by the agricultural community. Methods: This review describes and discusses the endemic VBPD that currently impact agricultural production in KS and foreign VBPD of concern. In addition, we outline the major arthropod vectors of VBPD in KS, including ticks, mites, and various insects. In the context of this review, parasites are strictly limited to arthropod ectoparasites that negatively impact livestock production. Modern agricultural data for the state of KS were mostly sourced from the USDA National Agricultural Statistics Service, and current KS VBPD data were mostly sourced from the KS State Veterinary Diagnostic Laboratory. Conclusion: These VBPD have a large economic impact on the state and country, and we have concluded there is a need for updated estimates regarding the economic burden of VBPD in KS and throughout the United States to make better animal and crop health investment decisions.
Collapse
Affiliation(s)
- Kristin Michel
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Nicole M Ioerger
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Ashlie M Ake
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Susan M Hettenbach
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Cassandra Olds
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Dustin L Pendell
- Department of Agricultural Economics, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - James Stack
- Department of Plant Pathology, College of Agriculture, Kansas State University, Manhattan, Kansas, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Fatima M, An T, Park PG, Hong KJ. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025; 17:352. [PMID: 40143281 PMCID: PMC11946417 DOI: 10.3390/v17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Zoonotic viruses have significant pandemic potential, as evidenced by the coronavirus pandemic, which underscores that zoonotic infections have historically caused numerous outbreaks and millions of deaths over centuries. Zoonotic viruses induce numerous types of illnesses in their natural hosts. These viruses are transmitted to humans via biological vectors, direct contact with infected animals or their bites, and aerosols. Zoonotic viruses continuously evolve and adapt to human hosts, resulting in devastating consequences. It is very important to understand pathogenesis pathways associated with zoonotic viral infections across various hosts and develop countermeasure strategies accordingly. In this review, we briefly discuss advancements in diagnostics and therapeutics for zoonotic viral infections. It provides insight into recent outbreaks, viral dynamics, licensed vaccines, as well as vaccine candidates progressing to clinical investigations. Despite advancements, challenges persist in combating zoonotic viruses due to immune evasion, unpredicted outbreaks, and the complexity of the immune responses. Most of these viruses lack effective treatments and vaccines, relying entirely on supportive care and preventive measures. Exposure to animal reservoirs, limited vaccine access, and insufficient coverage further pose challenges to preventive efforts. This review highlights the critical need for ongoing interdisciplinary research and collaboration to strengthen preparedness and response strategies against emerging infectious threats.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; (M.F.)
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Berguido FJ, Settypalli TBK, Mbuyi CGT, Bakhom MT, van Vuren PJ, Pawęska JT, Cattoli G, Grabherr R, Lamien CE. Development of a luminex-based assay for the detection of anti-capripoxvirus and rift valley fever virus antibodies in domestic ruminants. Virol J 2024; 21:335. [PMID: 39726039 PMCID: PMC11674245 DOI: 10.1186/s12985-024-02602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The three members of the genus capripoxvirus (CaPV), lumpy skin disease virus (LSDV), sheeppox virus (SPPV), and goatpox virus (GTPV) have common hosts and areas of overlapping geographical distribution with Rift Valley fever virus (RVFV). Hence, to ensure more cost-effective disease surveillance we developed and evaluated a Luminex assay for the simultaneous detection of antibodies against CaPV and RVFV in domestic ruminants. In cattle, the assay had a sensitivity (Se) of 98.7% and a specificity (Sp) of 98.3% in detecting anti-LSDV antibodies; both diagnostic parameters were 100% for the detection of anti-RVFV antibodies in this species. In sheep and goats, Se and Sp were 100% for the detection of anti-SPPV and anti-GTPV antibodies while they were 100% and 98.9%, respectively for the detection of anti-RVFV antibody. The assay did not cross react with anti-parapoxvirus antibodies of cattle, sheep, and goats. This multiplex serological assay offers a practical tool for accurate detection and monitoring of the immunological status of domestic ruminant populations against veterinary and socio-economically important capripox- and phleboviral infections, thus has the potential to aid in the strategic application of vaccination programmes.
Collapse
Affiliation(s)
- Francisco J Berguido
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
- Institute of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse18, 1190, Vienna, Austria.
| | - Tirumala Bharani Kumar Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Mame Thierno Bakhom
- Laboratoire National de L'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, 2131, South Africa
- Australian Centre for Disease Preparedness, Australian Animal Health Laboratory, CSIRO, Geelong, Australia
| | - Janusz T Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, 2131, South Africa
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Reingard Grabherr
- Institute of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse18, 1190, Vienna, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
4
|
Leroux-Roels I, Prajeeth CK, Aregay A, Nair N, Rimmelzwaan GF, Osterhaus ADME, Kardinahl S, Pelz S, Bauer S, D'Onofrio V, Alhatemi A, Jacobs B, De Boever F, Porrez S, Waerlop G, Punt C, Hendriks B, von Mauw E, van de Water S, Harders-Westerveen J, Rockx B, van Keulen L, Kortekaas J, Leroux-Roels G, Wichgers Schreur PJ. Safety and immunogenicity of the live-attenuated hRVFV-4s vaccine against Rift Valley fever in healthy adults: a dose-escalation, placebo-controlled, first-in-human, phase 1 randomised clinical trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1245-1253. [PMID: 39068957 DOI: 10.1016/s1473-3099(24)00375-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Rift Valley fever virus, a pathogen to ruminants, camelids, and humans, is an emerging mosquito-borne bunyavirus currently endemic to Africa and the Arabian Peninsula. Although animals are primarily infected via mosquito bites, humans mainly become infected following contact with infected tissues or fluids of infected animals. There is an urgent need for adequate countermeasures, especially for humans, because effective therapeutics or vaccines are not yet available. Here we assessed the safety, tolerability, and immunogenicity of a next-generation, four-segmented, live-attenuated vaccine candidate, referred to as hRVFV-4s, in humans. METHODS A first-in-human, single-centre, randomised, double-blind, placebo-controlled trial was done in Belgium in which a single dose of hRVFV-4s was administered to healthy volunteers aged 18-45 years. Participants were randomly assigned using an interactive web response system. The study population encompassed 75 participants naive to Rift Valley fever virus infection, divided over three dosage groups (cohorts) of 25 participants each. All participants were followed up until 6 months. Using a staggered dose escalating approach, 20 individuals of each cohort were injected in the deltoid muscle of the non-dominant arm with either 104 (low dose), 105 (medium dose), or 106 (high dose) of 50% tissue culture infectious dose of hRVFV-4s as based on animal data, and five individuals per cohort received formulation buffer as a placebo. Primary outcome measures in the intention-to-treat population were adverse events and tolerability. Secondary outcome measures were vaccine-induced viraemia, vaccine virus shedding, Rift Valley fever virus nucleocapsid antibody responses (with ELISA), and neutralising antibody titres. Furthermore, exploratory objectives included the assessment of cellular immune responses by ELISpot. The trial was registered with the EU Clinical Trials Register, 2022-501460-17-00. FINDINGS Between August and December, 2022, all 75 participants were vaccinated. No serious adverse events or vaccine-related severe adverse events were reported. Pain at the injection site (51 [85%] of 60 participants) was most frequently reported as solicited local adverse event, and headache (28 [47%] of 60) and fatigue (28 [47%] of 60) as solicited systemic adverse events in the active group. No vaccine virus RNA was detected in any of the blood, saliva, urine, or semen samples. Rift Valley fever virus nucleocapsid antibody responses were detected in most participants who were vaccinated with hRVFV-4s (43 [72%] of 60 on day 14) irrespective of the administered dose. In contrast, a clear dose-response relationship was observed for neutralising antibodies on day 28 with four (20%) of 20 participants responding in the low-dose group, 13 (65%) of 20 responding in the medium-dose group, and all participants (20 [100%] of 20) responding in the high-dose group. Consistent with the antibody responses, cellular immune responses against the nucleocapsid protein were detected in all dose groups, whereas a more dose-dependent response was observed for the Gn and Gc surface glycoproteins. Neutralising antibody titres declined over time, whereas nucleocapsid antibody responses remained relatively stable for at least 6 months. INTERPRETATION The hRVFV-4s vaccine showed a high safety profile and excellent tolerability across all tested dose regimens, eliciting robust immune responses, particularly with the high-dose administration. The findings strongly support further clinical development of this candidate vaccine for human use. FUNDING The Coalition for Epidemic Preparedness Innovations with support from the EU Horizon 2020 programme.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Amare Aregay
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Niranjana Nair
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany; CR2O, Maarssen, Netherlands
| | | | | | | | - Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Azhar Alhatemi
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bart Jacobs
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fien De Boever
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sharon Porrez
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | - Barry Rockx
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | | | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | |
Collapse
|
5
|
Petraccione K, Ali MGH, Cyr N, Wahba HM, Stocker T, Akhrymuk M, Akhrymuk I, Panny L, Bracci N, Cafaro R, Sastre D, Silberfarb A, O’Maille P, Omichinski J, Kehn-Hall K. An LIR motif in the Rift Valley fever virus NSs protein is critical for the interaction with LC3 family members and inhibition of autophagy. PLoS Pathog 2024; 20:e1012093. [PMID: 38512999 PMCID: PMC10986958 DOI: 10.1371/journal.ppat.1012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.
Collapse
Affiliation(s)
- Kaylee Petraccione
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed G. H. Ali
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Haytham M. Wahba
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Timothy Stocker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Maryna Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Raphaël Cafaro
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Danuta Sastre
- Biosciences Division, SRI International, Menlo Park, California, United States of America
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, Menlo Park, California, United States of America
| | - Paul O’Maille
- Biosciences Division, SRI International, Menlo Park, California, United States of America
| | - James Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
6
|
Fogeron ML, Callon M, Lecoq L, Böckmann A. Cell-Free Synthesis of Bunyavirales Proteins in View of Their Structural Characterization by Nuclear Magnetic Resonance. Methods Mol Biol 2024; 2824:105-120. [PMID: 39039409 DOI: 10.1007/978-1-0716-3926-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The Rift Valley fever virus is one of the bunyaviruses on the WHO's priority list of pathogens that may cause future pandemics. A better understanding of disease progression and viral pathogenesis is urgently needed to develop treatments. The non-structural proteins NSs and NSm of human pathogenic bunyaviruses represent promising therapeutic targets, as they are often key virulence factors. However, their function is still poorly understood, and their structure is yet unknown, mainly because no successful production of these highly complex proteins has been reported. Here we propose a powerful combination of wheat germ cell-free protein synthesis and NMR to study the structure of these proteins and in particular detail cell-free synthesis and lipid reconstitution methods that can be applied to complex membrane proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| | | | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Bron GM, Wichgers Schreur PJ, de Jong MCM, van Keulen L, Vloet RPM, Koenraadt CJM, Kortekaas J, ten Bosch QA. Quantifying Rift Valley fever virus transmission efficiency in a lamb-mosquito-lamb model. Front Cell Infect Microbiol 2023; 13:1206089. [PMID: 38170150 PMCID: PMC10759236 DOI: 10.3389/fcimb.2023.1206089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a (re)emerging mosquito-borne pathogen impacting human and animal health. How RVFV spreads through a population depends on population-level and individual-level interactions between vector, host and pathogen. Here, we estimated the probability for RVFV to transmit to naive animals by experimentally exposing lambs to a bite of an infectious mosquito, and assessed if and how RVFV infection subsequently developed in the exposed animal. Aedes aegypti mosquitoes, previously infected via feeding on a viremic lamb, were used to expose naive lambs to the virus. Aedes aegypti colony mosquitoes were used as they are easy to maintain and readily feed in captivity. Other mosquito spp. could be examined with similar methodology. Lambs were exposed to either 1-3 (low exposure) or 7-9 (high exposure) infectious mosquitoes. All lambs in the high exposure group became viremic and showed characteristic signs of Rift Valley fever within 2-4 days post exposure. In contrast, 3 out of 12 lambs in the low exposure group developed viremia and disease, with similar peak-levels of viremia as the high exposure group but with some heterogeneity in the onset of viremia. These results suggest that the likelihood for successful infection of a ruminant host is affected by the number of infectious mosquitoes biting, but also highlights that a single bite of an infectious mosquito can result in disease. The per bite mosquito-to-host transmission efficiency was estimated at 28% (95% confidence interval: 15 - 47%). We subsequently combined this transmission efficiency with estimates for life traits of Aedes aegypti or related mosquitoes into a Ross-McDonald mathematical model to illustrate scenarios under which major RVFV outbreaks could occur in naïve populations (i.e., R0 >1). The model revealed that relatively high vector-to-host ratios as well as mosquitoes feeding preferably on competent hosts are required for R0 to exceed 1. Altogether, this study highlights the importance of experiments that mimic natural exposure to RVFV. The experiments facilitate a better understanding of the natural progression of disease and a direct way to obtain epidemiological parameters for mathematical models.
Collapse
Affiliation(s)
- Gebbiena M. Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, Netherlands
| | - Lucien van Keulen
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Rianka P. M. Vloet
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | | | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Bian T, Hao M, Zhao X, Zhao C, Luo G, Zhang Z, Fu G, Yang L, Chen Y, Wang Y, Yu C, Yang Y, Li J, Chen W. A Rift Valley fever mRNA vaccine elicits strong immune responses in mice and rhesus macaques. NPJ Vaccines 2023; 8:164. [PMID: 37891181 PMCID: PMC10611786 DOI: 10.1038/s41541-023-00763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Rift Valley fever virus (RVFV) is listed as a priority pathogen by the World Health Organization (WHO) because it causes serious and fatal disease in humans, and there are currently no effective countermeasures. Therefore, it is urgent to develop a safe and efficacious vaccine. Here, we developed six nucleotide-modified mRNA vaccines encoding different regions of the Gn and Gc proteins of RVFV encapsulated in lipid nanoparticles, compared their ability to induce immune responses in mice and found that mRNA vaccine encoding the full-length Gn and Gc proteins had the strongest ability to induce cellular and humoral immune responses. IFNAR(-/-) mice vaccinated with mRNA-GnGc were protected from lethal RVFV challenge. In addition, mRNA-GnGc induced high levels of neutralizing antibodies and cellular responses in rhesus macaques, as well as antigen-specific memory B cells. These data demonstrated that mRNA-GnGc is a potent and promising vaccine candidate for RVFV.
Collapse
Affiliation(s)
- Ting Bian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Meng Hao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chuanyi Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Guangcheng Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Lu Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yi Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yudong Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yilong Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
9
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|