1
|
Du YX, Qi YH, Lu YH, Li BX, He YJ, Zhang Y, Lin L, Zhang CX, Wang XW, Chen JP, Lu G, Li JM. A plant virus attenuates the Toll immune pathway by degradation of Pellino to facilitate viral infection in insect vectors. J Virol 2025; 99:e0002125. [PMID: 40162791 PMCID: PMC12090757 DOI: 10.1128/jvi.00021-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Many plant viruses are persistently transmitted by insect vectors. The viral antagonism of insect innate immune responses is a critical step in ensuring persistent viral infection. Recent studies have shown that the Toll immune pathway mediates the persistent and propagative transmission of rice stripe virus (RSV) in its insect vector (Laodelphax striatellus). However, whether other host factors are involved in the Toll pathway and how RSV counteracts the Toll immune response in L. striatellus remain unclear. Here, we reported that LsPellino also inhibited RSV infection in L. striatellus by interacting with LsTube and participating in the Toll immune pathway. In contrast, the viral nonstructural protein NS3 hijacked the suppressor of cytokine signaling 5 (LsSOCS5) to promote the degradation of LsPellino via the 26S proteasome pathway, thereby suppressing the Toll immune response. In summary, these findings demonstrate that RSV attenuates the Toll immune pathway by degradation of LsPellino to facilitate viral infection in insect vectors. Our research provides new insights into controlling the transmission of vector-borne viruses. IMPORTANCE Plant virus diseases pose a serious threat to global crop production. Nearly half of the known plant viruses are persistently transmitted by insect vectors, and these plant viruses must counteract various innate immune responses to maintain persistent infection. Here, we uncover a novel counter-defense mechanism against Toll antiviral defense. Our research showed that LsPellino exerts antiviral function by interacting with LsTube and participating in the Toll immune pathway. To counteract this immunity, a plant virus, rice stripe virus, attenuates the Toll immune pathway and promotes viral infection by using viral nonstructural protein NS3 to mediate the degradation of LsPellino in its insect vector, Laodelphax striatellus. This study not only contributes to a better understanding of the arms race between viruses and insect vectors but also provides a new perspective for controlling the transmission of plant viruses.
Collapse
Affiliation(s)
- Yu-Xiao Du
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Hua Qi
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan-Hua Lu
- Yongjia County Agriculture and Rural Bureau, Yongjia, Zhejiang, China
| | - Bo-Xue Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Juan He
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Wei Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Gang Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Salauddin M, Bhattacharyya D, Samanta I, Saha S, Xue M, Hossain MG, Zheng C. Role of TLRs as signaling cascades to combat infectious diseases: a review. Cell Mol Life Sci 2025; 82:122. [PMID: 40105962 PMCID: PMC11923325 DOI: 10.1007/s00018-025-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Investigating innate immunity and its signaling transduction is essential to understand inflammation and host defence mechanisms. Toll-like receptors (TLRs), an evolutionarily ancient group of pattern recognition receptors, are crucial for detecting microbial components and initiating immune responses. This review summarizes the mechanisms and outcomes of TLR-mediated signaling, focusing on motifs shared with other immunological pathways, which enhances our understanding of the innate immune system. TLRs recognize molecular patterns in microbial invaders, activate innate immunity and promote antigen-specific adaptive immunity, and each of them triggers unique downstream signaling patterns. Recent advances have highlighted the importance of supramolecular organizing centers (SMOCs) in TLR signaling, ensuring precise cellular responses and pathogen detection. Furthermore, this review illuminates how TLR pathways coordinate metabolism and gene regulation, contributing to adaptive immunity and providing novel insights for next-generation therapeutic strategies. Ongoing studies hold promise for novel treatments against infectious diseases, autoimmune conditions, and cancers.
Collapse
Affiliation(s)
- Md Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9202, Bangladesh
| | - Debaraj Bhattacharyya
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu H, Stanley Z, Rahman M, Shao Z, Silva JM, Zha S, Sidi S. A noncanonical IRAK4-IRAK1 pathway counters DNA damage-induced apoptosis independently of TLR/IL-1R signaling. Sci Signal 2023; 16:eadh3449. [PMID: 38113335 PMCID: PMC11111193 DOI: 10.1126/scisignal.adh3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B. Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samanta Sarti
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alicia L. Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian J. Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrej Gorbatenko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francesca Nemati
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Stanley
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahbuba Rahman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose M. Silva
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Jensen LE. Pellino Proteins in Viral Immunity and Pathogenesis. Viruses 2023; 15:1422. [PMID: 37515108 PMCID: PMC10383966 DOI: 10.3390/v15071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pellino proteins are a family of evolutionarily conserved ubiquitin ligases involved in intracellular signaling in a wide range of cell types. They are essential for microbe detection and the initiation of innate and adaptive immune responses. Some viruses specifically target the Pellino proteins as part of their immune evasion strategies. Through studies of mouse models of viral infections in the central nervous system, heart, lungs, and skin, the Pellino proteins have been linked to both beneficial and detrimental immune responses. Only in recent years have some of the involved mechanisms been identified. The objective of this review is to highlight the many diverse aspects of viral immunity and pathogenesis that the Pellino proteins have been associated with, in order to promote further research into their functions. After a brief introduction to the cellular signaling mechanisms involving Pellino proteins, their physiological roles in the initiation of immune responses, pathogenesis through excess inflammation, immune regulation, and cell death are presented. Known viral immune evasion strategies are also described. Throughout, areas that require more in-depth investigation are identified. Future research into the functions of the Pellino protein family may reveal fundamental insights into how our immune system works. Such knowledge may be leveraged in the fight against viral infections and their sequala.
Collapse
Affiliation(s)
- Liselotte E Jensen
- Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Thirunavukkarasu M, Swaminathan S, Kemerley A, Pradeep SR, Lim ST, Accorsi D, Wilson R, Campbell J, Saad I, Yee SP, Palesty JA, McFadden DW, Maulik N. Role of Pellino-1 in Inflammation and Cardioprotection following Severe Sepsis: A Novel Mechanism in a Murine Severe Sepsis Model †. Cells 2023; 12:1527. [PMID: 37296648 PMCID: PMC10252528 DOI: 10.3390/cells12111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES Intra-abdominal sepsis is commonly diagnosed in the surgical population and remains the second most common cause of sepsis overall. Sepsis-related mortality remains a significant burden in the intensive care unit despite advances in critical care. Nearly a quarter of the deaths in people with heart failure are caused by sepsis. We have observed that overexpression of mammalian Pellino-1 (Peli1), an E3 ubiquitin ligase, causes inhibition of apoptosis, oxidative stress, and preservation of cardiac function in a myocardial infarction model. Given these manifold applications, we investigated the role of Peli1 in sepsis using transgenic and knockout mouse models specific to this protein. Therefore, we aimed to explore further the myocardial dysfunction seen in sepsis through its relation to the Peli 1 protein by using the loss of function and gain-of-function strategy. METHODS A series of genetic animals were created to understand the role of Peli1 in sepsis and the preservation of heart function. Wild-type, global Peli1 knock out (Peli1-/-), cardiomyocyte-specific Peli1 deletion (CP1KO), and cardiomyocyte-specific Peli1 overexpressing (alpha MHC (αMHC) Peli1; AMPEL1Tg/+) animals were divided into sham and cecal ligation and puncture (CLP) surgical procedure groups. Cardiac function was determined by two-dimensional echocardiography pre-surgery and at 6- and 24-h post-surgery. Serum IL-6 and TNF-alpha levels (ELISA) (6 h), cardiac apoptosis (TUNEL assay), and Bax expression (24 h) post-surgery were measured. Results are expressed as mean ± S.E.M. RESULTS AMPEL1Tg/+ prevents sepsis-induced cardiac dysfunction assessed by echocardiographic analysis, whereas global and cardiomyocyte-specific deletion of Peli1 shows significant deterioration of cardiac functions. Cardiac function was similar across the sham groups in all three genetically modified mice. ELISA assay displayed how Peli 1 overexpression decreased cardo-suppressive circulating inflammatory cytokines (TNF-alpha, IL-6) compared to both the knockout groups. The proportion of TUNEL-positive cells varied according to Peli1 expression, with overexpression (AMPEL1Tg/+) leading to a significant reduction and Peli1 gene knockout (Peli1-/- and CP1KO) leading to a significant increase in their presence. A similar trend was also observed with Bax protein expression. The improved cellular survival associated with Peli1 overexpression was again shown with the reduction of oxidative stress marker 4-Hydroxy-2-Nonenal (4-HNE). CONCLUSION Our results indicate that overexpression of Peli1 is a novel approach that not only preserved cardiac function but reduced inflammatory markers and apoptosis following severe sepsis in a murine genetic model.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Santosh Swaminathan
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Andrew Kemerley
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Seetur R. Pradeep
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Sue Ting Lim
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Diego Accorsi
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Rickesha Wilson
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Jacob Campbell
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ibnalwalid Saad
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, University of Connecticut Health School of Medicine, Farmington, CT 06032, USA
| | - J. Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - David W. McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Nilanjana Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| |
Collapse
|
7
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu I, Stanley Z, Shao Z, Silva JM, Zha S, Sidi S. A Non-Canonical IRAK Signaling Pathway Triggered by DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527716. [PMID: 36798275 PMCID: PMC9934671 DOI: 10.1101/2023.02.08.527716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.
Collapse
|