1
|
Wang Z, Tian C, Zhu J, Wang S, Ao X, He Y, Chen H, Liao X, Kong D, Zhou Y, Tai W, Liao M, Fan H. Avian influenza mRNA vaccine encoding hemagglutinin provides complete protection against divergent H5N1 viruses in specific-pathogen-free chickens. J Nanobiotechnology 2025; 23:55. [PMID: 39881325 PMCID: PMC11776166 DOI: 10.1186/s12951-025-03156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy. RESULTS In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge. Antibody and splenocyte passive transfer assays in mice suggested that antibodies played a crucial role in providing protection. Experiments involving SPF chickens have revealed that two doses of the 5 µg vaccine candidate in this study provided 100% complete protection against homologous strains, but only 50% complete protection against heterologous strains. Even immunization with two doses of the 15 µg vaccine candidate resulted in 90% complete protection against heterologous strains. To enhance the immune efficacy of the candidate vaccine, we designed 6 sequences with different secondary structures and screened out the candidate sequence with the highest expression (SY2-HA mRNA). Experiments on SPF chickens showed that two doses of 5 µg SY2-HA mRNA-LNP vaccine provided 100% complete protection against homologous and heterologous H5N1 AIV strains. Immunization tests with the SY2-HA mRNA-LNP vaccine were repeated in the SPF chicken model, inducing antibody production levels that are consistent with previous tests and providing 100% complete protection against both homologous and heterologous strains of the virus, indicating that the vaccine has a stable immune efficacy. CONCLUSIONS The vaccine developed in this study provides complete protection against divergent H5N1 AIV strains in chickens, offering a promising approach for the future development of mRNA vaccines against multivalent avian influenza subtypes.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiahang Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Shiqian Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Xiang Ao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yanjuan He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Huixin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Xiuying Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Deming Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yongfei Zhou
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co., Ltd, Beijing, 102206, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Kong D, He Y, Wang J, Chi L, Ao X, Ye H, Qiu W, Zhu X, Liao M, Fan H. A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage. Emerg Microbes Infect 2024; 13:2287682. [PMID: 37994795 PMCID: PMC10763850 DOI: 10.1080/22221751.2023.2287682] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
The H5N1 subtype highly pathogenic avian influenza virus (HPAIV) reveals high variability and threatens poultry production and public health. To prevent the spread of H5N1 HPAIV, we developed an H5N1 virus-like particle (VLP) vaccine based on the insect cell-baculovirus expression system. Single immunization of the H5N1 VLP vaccines induced high levels of HI antibody titres and provided effective protection against homologous virus challenge comparable to the commercial inactivated vaccine. Meanwhile, we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the adjuvants ISA 201 and ISA 71 and evaluated whether the two adjuvants could induce broadly protective immunity. The ISA 71 adjuvanted vaccine induced significantly higher levels of Th1 and Th2 immune responses and provided superior cross-protection against antigenically divergent H5N1 virus challenge than the ISA 201 adjuvanted vaccine. Importantly, increasing the vaccine dose could further enhance the cross-protective efficacy of H5N1 VLP vaccine and confer completely sterilizing protection against antigenically divergent H5N1 virus challenge, which was mediated by neutralizing antibodies. Our results suggest that the H5N1 VLP vaccine can provide broad-spectrum protection against divergent H5N1 influenza viruses as determined by adjuvant and vaccine dose.
Collapse
Affiliation(s)
- Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Yanjuan He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Jiaxin Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Lanyan Chi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Xiang Ao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Hejia Ye
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Weihong Qiu
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Xiutong Zhu
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Badruzzaman ATM, Cheng YC, Sung WC, Lee MS. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines (Basel) 2024; 12:667. [PMID: 38932396 PMCID: PMC11209530 DOI: 10.3390/vaccines12060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.
Collapse
Affiliation(s)
- A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320, Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| |
Collapse
|
4
|
Ge FF, Shen LP, Yang DQ, Yang XC, Li X, Shen HX, Wang J, Huang S. H3N2 canine influenza virus-like particle vaccine with great protection in beagle dogs. Microbiol Spectr 2024; 12:e0044524. [PMID: 38874403 PMCID: PMC11323971 DOI: 10.1128/spectrum.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
In 2016, a distinct branch of H3N2 canine influenza virus (CIV) emerged, which has mutations related to mammalian adaptation and has replaced previously prevalent strains. This branch poses a risk of zoonotic infection. To prevent and control H3N2 CIV, an H3N2 virus-like particle (VLP) vaccine based on the insect cell baculovirus expression system has been developed in the study. The H3N2 VLP vaccine induced high titers of hemagglutination inhibition (HI) antibodies in nasal and muscular immunized beagle dogs. Meanwhile, the VLP vaccine provided effective protection against homologous virus challenge comparable to inactivated H3N2 canine influenza virus. In addition, the intranasal H3N2 VLP vaccine induced significantly higher Th1, Th2, and Th17 immune responses, respectively (p,0.05). Importantly, intramuscular injection of VLP and inactivated H3N2 virus has complete protective effects against homologous H3N2 virus attacks. Nasal immunization with H3N2 VLP can partially protect beagles from H3N2 influenza. IMPORTANCE A new antigenically and genetically distinct canine influenza virus (CIV) H3N2 clade possessing mutations associated with mammalian adaptation emerged in 2016 and substituted previously circulating strains. This clade poses a risk for zoonotic infection. In our study, intramuscular injection of the H3N2 virus-like particle (VLP) vaccine and inactivated H3N2 CIV confer completely sterilizing protection against homologous H3N2 canine influenza virus challenge. Our results provide further support for the possibility of developing VLP vaccines that can reliably induce immunity in animal species.
Collapse
Affiliation(s)
- Fei-fei Ge
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Li-pin Shen
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - De-quan Yang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xian-cao Yang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Xin Li
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Hai-xiao Shen
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Jian Wang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| | - Shixin Huang
- Shanghai Municipal Center For Animal Disease Diagnosis, Shanghai Animal Disease Control Center, Shanghai, China
| |
Collapse
|
5
|
Rautenschlein S, Schat KA. The Immunological Basis for Vaccination. Avian Dis 2024; 67:366-379. [PMID: 38300658 DOI: 10.1637/aviandiseases-d-23-99996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 02/02/2024]
Abstract
Vaccination is crucial for health protection of poultry and therefore important to maintaining high production standards. Proper vaccination requires knowledge of the key players of the well-orchestrated immune system of birds, their interdependence and delicate regulation, and, subsequently, possible modes of stimulation through vaccine antigens and adjuvants. The knowledge about the innate and acquired immune systems of birds has increased significantly during the recent years but open questions remain and have to be elucidated further. Despite similarities between avian and mammalian species in their composition of immune cells and modes of activation, important differences exist, including differences in the innate, but also humoral and cell-mediated immunity with respect to, for example, signaling transduction pathways, antigen presentation, and cell repertoires. For a successful vaccination strategy in birds it always has to be considered that genotype and age of the birds at the time point of immunization as well as their microbiota composition may have an impact and may drive the immune reactions into different directions. Recent achievements in the understanding of the concept of trained immunity will contribute to the advancement of current vaccine types helping to improve protection beyond the specificity of an antigen-driven immune response. The fast developments in new omics technologies will provide insights into protective B- and T-cell epitopes involved in cross-protection, which subsequently will lead to the improvement of vaccine efficacy in poultry.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Clinic for Poultry, Hannover, Lower Saxony 30559, Germany,
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Zhang J, Nian X, Li X, Huang S, Duan K, Li X, Yang X. The Epidemiology of Influenza and the Associated Vaccines Development in China: A Review. Vaccines (Basel) 2022; 10:1873. [PMID: 36366381 PMCID: PMC9692979 DOI: 10.3390/vaccines10111873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/28/2023] Open
Abstract
Influenza prevention and control has been one of the biggest challenges encountered in the public health domain. The vaccination against influenza plays a pivotal role in the prevention of influenza, particularly for the elderly and small children. According to the epidemiology of influenza in China, the nation is under a heavy burden of this disease. Therefore, as a contribution to the prevention and control of influenza in China through the provision of relevant information, the present report discusses the production and batch issuance of the influenza vaccine, analysis of the vaccination status and vaccination rate of the influenza vaccine, and the development trend of the influenza vaccine in China.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Ltd., Beijing 100029, China
| |
Collapse
|