1
|
Briggs N, Versteeg L, Mejia R, Pollet J, Villar MJ, Zhan B, Segal G, Novak S, Lenihan P, Musgrave P, Ellis V, Coello CF, Sastry KJ, Craft J, Hotez PJ, Bottazzi ME. A Honduran Prevalence Study on Soil-Transmitted Helminths Highlights Serological Antibodies to Tm-WAP49 as a Diagnostic Marker for Exposure to Human Trichuriasis. Am J Trop Med Hyg 2025; 112:1017-1025. [PMID: 39933187 PMCID: PMC12062693 DOI: 10.4269/ajtmh.24-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/20/2024] [Indexed: 02/13/2025] Open
Abstract
Soil-transmitted helminth (STH) infections rank among the most prevalent communicable diseases of humans, yet detection of these parasites is mostly restricted to identifying active infection through fecal examinations. Currently, there are no commercial diagnostic tools to identify a prior whipworm or hookworm exposure, and the few serological assays for roundworm infection have not been well validated for crossreactivity or infections in humans. Such diagnostic restrictions limit the range of scientific and clinical questions that surround STH exposures and their implicated relationship to chronic diseases, such as autoimmunity, allergy, and cancer. The goal of this investigation was to evaluate the diagnostic potential of 13 STH recombinant proteins. As there are no gold standard tests to verify positive STH antisera, we used sera from active STH-infected individuals in Honduras (measured by quantitative real-time polymerase chain reaction of helminth DNA in stool) and compared antibody recognition by both ELISA and western blot with nonendemic control sera from age-matched individuals in the United States split into screening and validation cohorts. One recombinant protein, rTm-WAP49, shows potential as a whipworm diagnostic tool by receiver-operator characteristic analysis (area under the curve = 0.997, P <0.001) and indirect ELISA with sensitivity of 100% and specificity of 91% as defined by mean plus two SDs from the nonendemic screening cohort. We found discrepancies in serological recognition of previously tested STH antigens, highlighting the need to consider different technologies before down selection of a promising diagnostic candidate and screen multiple endemic populations before widely accepting an STH serological assay.
Collapse
Affiliation(s)
- Neima Briggs
- Department of Internal Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Rojelio Mejia
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Graeme Segal
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephanie Novak
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Patricia Lenihan
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul Musgrave
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | - Viviana Ellis
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, Texas
| | | | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, Connecticut
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Biology, Baylor University, Waco, Texas
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Department of Biology, Baylor University, Waco, Texas
| |
Collapse
|
2
|
Sasaki H, Suzuki Y, Morimoto K, Takeda K, Uchida K, Iyoda M, Ishikawa H. Intranasal Immunization with Nasal Immuno-Inducible Sequence-Fused Antigens Elicits Antigen-Specific Antibody Production. Int J Mol Sci 2024; 25:12828. [PMID: 39684539 DOI: 10.3390/ijms252312828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Intranasal immunization is one of the most effective methods for eliciting lung mucosal immunity. Multiple intranasal immunization with bacterial polypeptide, termed as a modified PnxIIIA (MP3) protein, is known to elicit production of a specific antibody in mice. In this study, a nasal immuno-inducible sequence (NAIS) was designed to remove the antigenicity of the MP3 protein that can induce mucosal immunity by intranasal immunization, and was examined to induce antigen-specific antibodies against the fused bacterial thioredoxin (Trx) as a model antigen. A NAIS was modified and generated to remove a large number of predicted MHC (Major Histocompatibility Complex)-I and MHC-II binding sites in parent protein PnxIIIA and MP3 in order to reduce the number of antigen epitope sites. For comparative analysis, full-length NAIS291, NAIS230, and NAIS61 fused with Trx and 6× His tag and Trx-fused 6× His tag were used as antigen variants for the intranasal immunization of BALB/c mice every two weeks for three immunizations. Anti-Trx antibody titers in serum and bronchoalveolar lavage fluid (BALF) IgA obtained from NAIS291-fused Trx-immunized mice were significantly higher than those from Trx-immunized mice. The antibody titers against NAIS alone were significantly lower than those against Trx alone in the serum IgG, serum IgA, and BALF IgA. These results indicate that the NAIS contributes to antibody elicitation of the fused antigen as an immunostimulant in intranasal vaccination vaccines. The results indicate that the NAIS and target inactivated antigen fusions can be applied to intranasal vaccine systems.
Collapse
Affiliation(s)
- Hiraku Sasaki
- Graduate School of Health and Sports Science, Juntendo University, Chiba 2701695, Japan
| | - Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba 2701695, Japan
| | - Kodai Morimoto
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo 1138421, Japan
| | - Kazuyoshi Takeda
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo 1138421, Japan
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 1138421, Japan
- Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo 1138421, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo 1428555, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo 1428555, Japan
| |
Collapse
|
3
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
4
|
Tognarelli EI, Gutiérrez-Vera C, Palacios PA, Pasten-Ferrada IA, Aguirre-Muñoz F, Cornejo DA, González PA, Carreño LJ. Natural Killer T Cell Diversity and Immunotherapy. Cancers (Basel) 2023; 15:5737. [PMID: 38136283 PMCID: PMC10742272 DOI: 10.3390/cancers15245737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Invariant natural killer T cells (iNKTs), a type of unconventional T cells, share features with NK cells and have an invariant T cell receptor (TCR), which recognizes lipid antigens loaded on CD1d molecules, a major histocompatibility complex class I (MHC-I)-like protein. This interaction produces the secretion of a wide array of cytokines by these cells, including interferon gamma (IFN-γ) and interleukin 4 (IL-4), allowing iNKTs to link innate with adaptive responses. Interestingly, molecules that bind CD1d have been identified that enable the modulation of these cells, highlighting their potential pro-inflammatory and immunosuppressive capacities, as required in different clinical settings. In this review, we summarize key features of iNKTs and current understandings of modulatory α-galactosylceramide (α-GalCer) variants, a model iNKT cell activator that can shift the outcome of adaptive immune responses. Furthermore, we discuss advances in the development of strategies that modulate these cells to target pathologies that are considerable healthcare burdens. Finally, we recapitulate findings supporting a role for iNKTs in infectious diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ignacio A. Pasten-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel A. Cornejo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
5
|
Lebu S, Kibone W, Muoghalu CC, Ochaya S, Salzberg A, Bongomin F, Manga M. Soil-transmitted helminths: A critical review of the impact of co-infections and implications for control and elimination. PLoS Negl Trop Dis 2023; 17:e0011496. [PMID: 37561673 PMCID: PMC10414660 DOI: 10.1371/journal.pntd.0011496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Researchers have raised the possibility that soil-transmitted helminth (STH) infections might modify the host's immune response against other systemic infections. STH infections can alter the immune response towards type 2 immunity that could then affect the likelihood and severity of other illnesses. However, the importance of co-infections is not completely understood, and the impact and direction of their effects vary considerably by infection. This review synthesizes evidence regarding the relevance of STH co-infections, the potential mechanisms that explain their effects, and how they might affect control and elimination efforts. According to the literature reviewed, there are both positive and negative effects associated with STH infections on other diseases such as malaria, human immunodeficiency virus (HIV), tuberculosis, gestational anemia, pediatric anemia, neglected tropical diseases (NTDs) like lymphatic filariasis, onchocerciasis, schistosomiasis, and trachoma, as well as Coronavirus Disease 2019 (COVID-19) and human papillomavirus (HPV). Studies typically describe how STHs can affect the immune system and promote increased susceptibility, survival, and persistence of the infection in the host by causing a TH2-dominated immune response. The co-infection of STH with other diseases has important implications for the development of treatment and control strategies. Eliminating parasites from a human host can be more challenging because the TH2-dominated immune response induced by STH infection can suppress the TH1 immune response required to control other infections, resulting in an increased pathogen load and more severe disease. Preventive chemotherapy and treatment are currently the most common approaches used for the control of STH infections, but these approaches alone may not be adequate to achieve elimination goals. Based on the conclusions drawn from this review, integrated approaches that combine drug administration with water, sanitation and hygiene (WASH) interventions, hygiene education, community engagement, and vaccines are most likely to succeed in interrupting the transmission of STH co-infections. Gaining a better understanding of the behavior and relevance of STH co-infections in the context of elimination efforts is an important intermediate step toward reducing the associated burden of disease.
Collapse
Affiliation(s)
- Sarah Lebu
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Winnie Kibone
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Chimdi C. Muoghalu
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen Ochaya
- Department of Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
- Department of Clinical Pathology, Uppsala Academic Hospital, Uppsala, Sweden
| | - Aaron Salzberg
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Felix Bongomin
- Department of Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Musa Manga
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Wainwright E, Shears RK. Trichuris WAP and CAP proteins: Potential whipworm vaccine candidates? PLoS Negl Trop Dis 2022; 16:e0010933. [PMID: 36548229 PMCID: PMC9778506 DOI: 10.1371/journal.pntd.0010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Trichuris trichiura and T. suis are gastrointestinal dwelling roundworms that infect humans and pigs, respectively. Heavy infections cause gastrointestinal symptoms and impaired growth and development. Vaccination has the potential to reduce the disease burden of whipworm infection; however, there are currently no commercially available vaccines against these parasites and very few against other gastrointestinal-dwelling nematodes of medical and agricultural importance. The naturally occurring mouse whipworm, T. muris, has been used for decades to model human trichuriasis, and the immunogenic potential of the excretory/secretory material (E/S, which can be collected following ex vivo culture of worms) has been studied in the context of vaccine candidate identification. Despite this, researchers are yet to progress an effective vaccine candidate to clinical trials. The T. muris, T. trichiura, and T. suis genomes each encode between 10 and 27 whey acidic protein (WAP) domain-containing proteins and 15 to 34 cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) family members. WAP and CAP proteins have been postulated to play key roles in host-parasite interactions and may possess immunomodulatory functions. In addition, both protein families have been explored in the context of helminth vaccines. Here, we use phylogenetic and functional analysis to investigate the evolutionary relationship between WAP and CAP proteins encoded by T. muris, T. trichiura, and T. suis. We highlight several WAP and CAP proteins that warrant further study to understand their biological function and as possible vaccine candidates against T. trichiura and/or T. suis, based on the close evolutionary relationship with WAP or CAP proteins identified within T. muris E/S products.
Collapse
Affiliation(s)
- Eleanor Wainwright
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rebecca K. Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Hua T, Chang C, Zhang X, Huang Y, Wang H, Zhang D, Tang B. Protective efficacy of intranasal inactivated pseudorabies vaccine is improved by combination adjuvant in mice. Front Microbiol 2022; 13:976220. [PMID: 36187997 PMCID: PMC9520748 DOI: 10.3389/fmicb.2022.976220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudorabies virus (PRV) not only causes great economic loss to the pig industry but also seriously threatens the biosafety of other mammals, including humans. Since 2011, PRV mutant strains have emerged widely in China, and the classical Bartha-K61 vaccine cannot confer complete protection for pigs. PRV mainly infects pigs via the respiratory tract. Intranasal immunization with PRV has received more attention because intranasal vaccination elicits systemic and mucosal immune responses. To induce systemic and mucosal immune responses against PRV, we developed a combination adjuvant as a delivery system for intranasal vaccine, which was formulated with MONTANIDE™ Gel 01 and CVCVA5. In comparison to naked antigen of inactivated PRV, single Gel 01 adjuvanted inactivated antigen and single CVCVA5 adjuvanted inactivated antigen, intranasal inactivated PRV vaccine formulated with the combination adjuvant induced greater mucosal IgA immunity and serum antibody responses (IgG, IgG1, and IgG2a). Furthermore, the production of the Th1-type cytokine IFN-γ and the Th2-type cytokine IL-4 indicated that the cellular and humoral responses to the intranasal vaccine were improved by the combination adjuvant. In addition, the intranasal vaccine formulated with the combination adjuvant induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L–CD44+) memory subsets of both CD4 and CD8 T cells in nasal-associated lymphoid tissue. Intranasal challenge with virulent PRV in mice showed that the protective efficacy of the intranasal PRV vaccine was improved by the combination adjuvant compared with the other single-adjuvanted vaccines. In summary, these data demonstrated that Gel 01 combined with the CVCVA5 adjuvant induced a synergistic effect to improve mucosal immunity and protective efficacy of the intranasally inactivated PRV vaccine in mice. It represents a promising vaccination approach against PRV infection.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqing Huang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Research Center of Veterinary Bio-product Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Bo Tang,
| |
Collapse
|