1
|
Stanek M, Leśków A, Diakowska D. Effect of SARS-CoV-2 Infection on Selected Parameters of the Apelinergic System in Repeat Blood Donors. Biomedicines 2024; 12:2583. [PMID: 39595149 PMCID: PMC11591813 DOI: 10.3390/biomedicines12112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: SARS-CoV-2 enters cells primarily by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, thereby blocking its physiological functions, affecting the apelinergic system, and inhibiting the cleavage of its peptides. The appropriate concentration of peptides in the apelinergic system influences the maintenance of homeostasis and protects against cardiovascular diseases. In our research, we determined the level of selected parameters of the apelinergic system-apelin (AP), elabela (ELA), and the apelin receptor (APJ)-in repeat blood donors. Methods: We analyzed 120 serum samples obtained from 30 repeat donors (study group) within four time periods after a SARS-CoV-2 infection: <60 days, 61-90 days, 91-120 days, and >120 days. We compared the results from the study groups with those of the control group, which consisted of 30 serum samples collected from donors donating blood in the years 2018-2019. Results: We observed that the AP, ELA, and APJ concentrations in the control group are higher than in any period in the study group. In the study group, the concentrations of AP and ELA increased in subsequent study periods. AP and ELA concentrations were lower shortly after SARS-CoV-2 transfection and then slowly increased in subsequent periods. APJ concentrations, on the other hand, were lowest at 61-90 days after the infection, but the decrease, relative to their level in healthy subjects, was significant in every period studied. Conclusions: The results suggest that infection with SARS-CoV-2 causes changes in the parameters of the apelinergic system, both after a short period of time has passed since the onset of the SARS-CoV-2 infection, and even up to 4 months after the infection.
Collapse
Affiliation(s)
- Marta Stanek
- Regional Center of Transfusion Medicine and Blood Bank, 50-345 Wrocław, Poland
| | - Anna Leśków
- Division of Medical Biology, Faculty of Nursing and Midwifery, Wroclaw Medical University, 50-368 Wrocław, Poland;
| | - Dorota Diakowska
- Division of Medical Biology, Faculty of Nursing and Midwifery, Wroclaw Medical University, 50-368 Wrocław, Poland;
| |
Collapse
|
2
|
Yuan S, Meng F, Zhou S, Liu X, Liu X, Zhang L, Wang T. Predicting susceptibility to COVID-19 infection in patients on maintenance hemodialysis by cross-coupling soluble ACE2 concentration with lymphocyte count: an algorithmic approach. Front Med (Lausanne) 2024; 11:1444719. [PMID: 39540040 PMCID: PMC11558530 DOI: 10.3389/fmed.2024.1444719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Patients on maintenance hemodialysis (MHD) were more vulnerable to and had a higher mortality during the COVID-19 pandemic. As angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine S1 member 2 (TMPRSS2) played crucial roles in viral entry into the human host cells, we therefore investigated in the MHD patients whether their plasma levels were associated with susceptibility to the COVID-19. Methods Blood samples were collected from the patients in our then COVID-19 free center immediately upon lifting of the stringent quarantine measures in early December of 2022 and infection situation was observed within the following 2 weeks. Plasma levels of the soluble ACE2 (sACE2), ACE (sACE) and TMPRSS2 (sTMPRSS2) were measured with ELISA method. Data were stepwisely tested for independent effect, relevant role and synergistic action on the susceptibility by multiple logistic regression, receiver operating characteristic curve and multiple dimensionality reduction (MDR) method, respectively. Results Among the 174 eligible patients, 95 (54.6%) turned COVID-19 positive with a male to female ratio of 1.57 during the observation period. Comparing with the uninfected, the infected had significantly higher sACE2 and lower sTMPRSS2 levels upon comparable sACE concentration. Besides the sACE2, factors associated with susceptibility were vintage and individual session time of the hemodialysis, smoking and comorbidity of hepatitis, whereas lymphocyte counts showed a tendency (p = 0.052). Patients simultaneously manifesting higher sACE2 level and lower lymphocyte counts had an increased infection risk as confirmed by the MDR method. Conclusion By sorting out the susceptible ones expeditiously, this algorithmic approach may help the otherwise vulnerable MHD patients weather over future wave of COVID-19 variants or outbreak of other viral diseases.
Collapse
Affiliation(s)
- Shuang Yuan
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - FuLei Meng
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - XiaoYing Liu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - XiaoMing Liu
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - LiHong Zhang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Wang
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
4
|
Vishweshwaraiah YL, Hnath B, Wang J, Chandler M, Mukherjee A, Yennawar NH, Booker SJ, Afonin KA, Dokholyan NV. A Piecewise Design Approach to Engineering a Miniature ACE2 Mimic to Bind SARS-CoV-2. ACS APPLIED BIO MATERIALS 2024; 7:3238-3246. [PMID: 38700999 PMCID: PMC11586090 DOI: 10.1021/acsabm.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues its global spread, the exploration of novel therapeutic and diagnostic strategies is still needed. The virus enters host cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor through the spike protein. Here, we develop an engineered, small, stable, and catalytically inactive version of ACE2, termed miniature ACE2 (mACE2), designed to bind the spike protein with high affinity. Employing a magnetic nanoparticle-based assay, we harnessed the strong binding affinity of mACE2 to develop a sensitive and specific platform for the detection or neutralization of SARS-CoV-2. Our findings highlight the potential of engineered mACE2 as a valuable tool in the fight against SARS-CoV-2. The success of developing such a small reagent based on a piecewise molecular design serves as a proof-of-concept approach for the rapid deployment of such agents to diagnose and fight other viral diseases.
Collapse
Affiliation(s)
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Arnab Mukherjee
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| |
Collapse
|
5
|
You J, Huang R, Zhong R, Shen J, Huang S, Chen J, Chen F, Kang Y, Chen L. Serum AXL is a potential molecular marker for predicting COVID-19 progression. Front Immunol 2024; 15:1394429. [PMID: 38799467 PMCID: PMC11116689 DOI: 10.3389/fimmu.2024.1394429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background The severity, symptoms, and outcome of COVID-19 is thought to be closely linked to how the virus enters host cells. This process involves the key roles of angiotensin-converting enzyme 2 (ACE2) and the Tyrosine protein kinase receptor UFO (AXL) receptors. However, there is limited research on the circulating levels of ACE2 and AXL and their implications in COVID-19. Methods A control group of 71 uninfected individuals was also included in the study. According to the Guidance for Corona Virus Disease 2019 (10th edition), a cohort of 358 COVID-19 patients were categorized into non-severe and severe cases. Serum ACE2/AXL levels in COVID-19 patients were detected by enzyme-linked immunosorbent assay (ELISA) at different time points post-COVID-19 infection, including days 0-7, 8-15, 31-179 and >180 days. Serum SARS-CoV-2 IgG/IgM antibodies in COVID-19 patients at the same intervals were assessed by using an iFlash 3000 Chemiluminescence Immunoassay Analyzer. The receiver operating characteristic (ROC) curves were used to assess the diagnostic value of the biological markers, and the association between laboratory parameters and illness progression were explored. Results Compared with the uninfected group, the levels of ACE2 and AXL in the COVID-19 group were decreased, and the SARS-COV-2 IgG level was increased. AXL (AUC = 0.774) demonstrated a stronger predictive ability for COVID-19 than ACE2. In the first week after infection, only the level of AXL was statistically different between severe group and non-severe group. After first week, the levels of ACE2 and AXL were different in two groups. Moreover, in severe COVID-19 cases, the serum ACE2, AXL, and SARS-COV-2 IgM levels reached a peak during days 8-15 before declining, whereas serum SARS-COV-2 IgG levels continued to rise, reaching a peak at day 31-180 days before decreasing. In addition, the AXL level continued to decrease and the SARS-COV-2 IgG level continued to increase in the infected group after 180 days compared to the uninfected group. Conclusions The levels of serum ACE2 and AXL correlate with COVID-19 severity. However, AXL can also provide early warning of clinical deterioration in the first week after infection. AXL appears to be a superior potential molecular marker for predicting COVID-19 progression.
Collapse
Affiliation(s)
- Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Rong Huang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Shen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Shuhang Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Santos CS, Chen JP, Nikiphorou E, Tseng CW, Gutiérrez CET, Tan AL, Nune A, Kadam E, Kuwana M, Day J, Saha S, Velikova T, Lilleker JB, Caballero-Uribe CV, Sen P, Chinoy H, Aggarwal R, Agarwal V, Gupta L, Chen YM. Breakthrough SARS-CoV-2 infection and disease flares in patients with rheumatoid arthritis: result from COVAD e-survey study. Rheumatol Int 2024; 44:805-817. [PMID: 38470502 DOI: 10.1007/s00296-024-05542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 03/14/2024]
Abstract
COVID-19 has been suggested as a possible trigger of disease flares in patients with rheumatoid arthritis (RA). However, factors associated with disease flares remain unknown. This study aimed to identify factors associated with breakthrough infection (BIs) and disease flares in patients with RA following COVID-19. We analysed data from RA patients who participated in the COVID-19 vaccination in autoimmune diseases (COVAD) study. Demographic data, patient-reported outcomes, comorbidities, pharmacologic treatment and details regarding disease flares were extracted from the COVAD database. Factors associated with disease flare-ups were determined by multivariate logistic regression analysis. The analysis comprised 1928 patients with RA who participated in the COVAD study. Younger age, Caucasian ethnicity, comorbidities with obstructive chronic pulmonary disease and asthma were associated with COVID-19 breakthrough infection. Moreover, younger age (odds ratio (OR): 0.98, 95% CI 0.96-0.99, p < 0.001), ethnicity other than Asian, past history of tuberculosis (OR: 3.80, 95% CI 1.12-12.94, p = 0.033), treatment with methotrexate (OR: 2.55, 95% CI: 1.56-4.17, p < 0.001), poor global physical health (OR: 1.07, 95% CI 1.00-1.15, p = 0.044) and mental health (OR: 0.91, 95% CI 0.87-0.95, p < 0.001) were independent factors associated disease flares in patients with RA. Our study highlights the impact of socio-demographic factors, clinical characteristics and mental health on disease flares in patients with RA. These insights may help determine relevant strategies to proactively manage RA patients at risk of flares.
Collapse
Affiliation(s)
| | - Jun-Peng Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases, King's College London, London, UK
- Rheumatology Department, King's College Hospital, London, UK
| | - Chi-Wei Tseng
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Carlos Enrique Toro Gutiérrez
- Reference Center for Osteoporosis, Rheumatology and Dermatology, Pontifica Universidad Javeriana Cali, Cali, Colombia
| | - Ai Lyn Tan
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Arvind Nune
- Southport and Ormskirk Hospital NHS Trust, Southport, PR8 6PN, UK
| | - Esha Kadam
- Seth Gordhandhas Sunderdas Medical College and King Edwards Memorial Hospital, Mumbai, Maharashtra, India
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Jessica Day
- Department of Rheumatology, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sreoshy Saha
- Mymensingh Medical College, Mymensingh, Bangladesh
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407, Sofia, Bulgaria
| | - James B Lilleker
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre The University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | | | - Parikshit Sen
- Maulana Azad Medical College, 2-Bahadurshah Zafar Marg, New Delhi, Delhi, 110002, India
| | - Hector Chinoy
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre The University of Manchester, Manchester, UK
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Latika Gupta
- Division of Musculoskeletal and Dermatological Sciences, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre The University of Manchester, Manchester, UK
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
- Department of Rheumatology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung City, Taiwan.
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung City, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Kakavandi E, Sadeghi K, Shayestehpour M, Mirhendi H, Rahimi Foroushani A, Mokhtari-Azad T, Shafiei Jandaghi NZ, Yavarian J. Evaluation of angiotensin converting enzyme 2 (ACE2), angiotensin II (Ang II), miR-141-3p, and miR-421 levels in SARS-CoV-2 patients: a case-control study. BMC Infect Dis 2024; 24:429. [PMID: 38649818 PMCID: PMC11036566 DOI: 10.1186/s12879-024-09310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious virus that uses angiotensin converting enzyme 2 (ACE2), a pivotal member of the renin-angiotensin system (RAS), as its cell-entry receptor. Another member of the RAS, angiotensin II (Ang II), is the major biologically active component in this system. There is growing evidence suggesting that serum miRNAs could serve as prognostic biomarkers for SARS-CoV-2 infection and regulate ACE2 expression. Therefore, the aim of this study is to evaluate the changes in the serum levels of sACE2 and Ang II, as well as the expression level of miR-141-3p and miR-421 in SARS-CoV-2 positive and negative subjects. METHODS In the present study, the serum levels of sACE2 and Ang II were measured in 94 SARS-CoV-2 positive patients and 94 SARS-CoV-2 negative subjects with some symptoms similar to those of SARS-CoV-2 positive patients using the ELISA method. In addition, the expression level of miR-141-3p and miR-421 as ACE2 regulators and biomarkers was evaluated using quantitative real-time PCR (qRT-PCR) method. RESULTS The mean serum sACE2 concentration in the SARS-CoV-2-positive group was 3.268 ± 0.410 ng/ml, whereas in the SARS-CoV-2 negative group, it was 3.564 ± 0.437 ng/ml. Additionally, the mean serum Ang II level in the SARS-CoV-2 positive and negative groups were 60.67 ± 6.192 ng/L and 67.97 ± 6.837 ng/L, respectively. However, there was no significant difference in the serum levels of sACE2 (P value: 0.516) and Ang II (P value: 0.134) between the SARS-CoV-2 positive and negative groups. Meanwhile, our findings indicated that the expression levels of miR-141-3p and miR-421 in SARS-CoV-2 positive group were significantly lower and higher than SARS-CoV-2 negative group, respectively (P value < 0.001). CONCLUSIONS Taken together, the results of this study showed that the serum levels of sACE2 and Ang II in SARS-CoV-2 positive and negative subjects were not significantly different, but the expression levels of miR-141-3p and miR-421 were altered in SARS-CoV-2 positive patients which need more investigation to be used as biomarkers for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Sadeghi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shayestehpour
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Prato M, Tiberti N, Mazzi C, Gobbi F, Piubelli C, Longoni SS. The Renin-Angiotensin System (RAS) in COVID-19 Disease: Where We Are 3 Years after the Beginning of the Pandemic. Microorganisms 2024; 12:583. [PMID: 38543635 PMCID: PMC10975343 DOI: 10.3390/microorganisms12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.
Collapse
Affiliation(s)
- Marco Prato
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
9
|
Pencheva M, Bozhkova M, Kalchev Y, Petrov S, Baldzhieva A, Kalfova T, Dichev V, Keskinova D, Genova S, Atanasova M, Murdzheva M. The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines 2023; 11:3160. [PMID: 38137381 PMCID: PMC10741205 DOI: 10.3390/biomedicines11123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus as well as the COVID-19 mRNA vaccines cause an increased production of proinflammatory cytokines. AIM We investigated the relationship between ACE2, CTSL, AngII, TNFα and the serum levels of IL-6, IL-10, IL-33, IL-28A, CD40L, total IgM, IgG, IgA and absolute count of T- and B-lymphocytes in COVID-19 patients, vaccinees and healthy individuals. METHODS We measured the serum levels ACE2, AngII, CTSL, TNFα and humoral biomarkers (CD40L, IL-28A, IL-10, IL-33) by the ELISA method. Immunophenotyping of lymphocyte subpopulations was performed by flow cytometry. Total serum immunoglobulins were analyzed by the turbidimetry method. RESULTS The results established an increase in the total serum levels for ACE2, CTSL, AngII and TNFα by severely ill patients and vaccinated persons. The correlation analysis described a positive relationship between ACE2 and proinflammatory cytokines IL-33 (r = 0.539) and CD40L (r = 0.520), a positive relationship between AngII and CD40L (r = 0.504), as well as between AngII and IL-33 (r = 0.416), and a positive relationship between CTSL, total IgA (r = 0.437) and IL-28A (r = 0.592). Correlation analysis confirmed only two of the positive relationships between TNFα and IL-28A (r = 0.491) and CD40L (r = 0.458). CONCLUSIONS In summary, the findings presented in this study unveil a complex web of interactions within the immune system in response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Yordan Kalchev
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Dichev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Donka Keskinova
- Department of Applied and Institutional Sociology, Faculty of Philosophy and History, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria;
| | - Silvia Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Laboratory of Virology, UMBAL “St. George” EAD, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
10
|
Ahmed R, Saba AA, Paul A, Nur J, Alam MS, Chakraborty S, Howlader MZH, Islam LN, Nabi AHMN. Intronic Variants of the Angiotensin-Converting Enzyme 2 Gene Modulate Plasma ACE2 Levels and Possibly Confer Protection against Severe COVID-19. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5705076. [PMID: 37929242 PMCID: PMC10622595 DOI: 10.1155/2023/5705076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor acts as the entry point for the novel coronavirus, SARS-CoV-2. Polymorphisms in the ACE2 gene may alter viral binding, regulate the expression of ACE2, and thus, affect disease severity. In this study, 68 COVID-19 patients with varying degrees of severity and 40 healthy controls were enrolled. The genetic landscape of the ACE2 gene was explored by whole exome sequencing of 29 individuals, and specific regions of ACE2 were analyzed for the rest of the participants via PCR, followed by barcode-tagged sequencing. The mean soluble ACE2 level in the plasma of healthy controls and patients did not vary significantly but was higher in the patient group (3.77 ± 1.55 ng/mL vs. 3.94 ± 1.42 ng/mL). Analysis of exon 1, exon 2, and exon 8 of the ACE2 gene revealed that these regions are highly conserved in our population. Investigation of exon 11 and its flanking intronic region revealed that deletions in a stretch of 18T nucleotides in the noncoding region significantly decrease ACE2 levels in plasma, as individuals harboring wild-type variants had higher plasma ACE2 levels compared to those harboring T1del, T2del, and T3del variants. However, the intronic variants were not found to be significantly associated with disease severity.
Collapse
Affiliation(s)
- Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Paul
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jasmin Nur
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Md Sohrab Alam
- Department of Immunology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbag, Dhaka, Bangladesh
| | - Sajib Chakraborty
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Zakir Hossain Howlader
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Laila N. Islam
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
11
|
Shevchuk O, Pak A, Palii S, Ivankiv Y, Kozak K, Korda M, Vari SG. Blood ACE2 Protein Level Correlates with COVID-19 Severity. Int J Mol Sci 2023; 24:13957. [PMID: 37762258 PMCID: PMC10530872 DOI: 10.3390/ijms241813957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
ACE2's impact on the severity of COVID-19 is widely discussed but still controversial. To estimate its role in aspects of the main risk factors and comorbidities, we involved post-COVID-19 patients in Ternopil region (Ukraine). The recruitment period was from July 2020 to December 2021. Medical records, treatment modalities, and outcomes were recorded and analyzed. The serum human ACE2 protein was measured with Cusabio ELISA kits (Houston, TX, USA). Statistical analysis was performed with SPSS21.0 software (SPSS Inc., Chicago, IL, USA). The level of the ACE2 serum protein was significantly higher (p < 0.001) in patients with mild symptoms compared to a more severe course of the disease, and inversely had changed from 1 to 90 days after recovery. In patients with mild COVID-19, ACE2 levels significantly decreased over time, while among critical patients, it increased by 34.1 percent. Such results could be explained by ACE2 shedding from tissues into circulation. Loss of the membrane-bound form of the enzyme decreases the virus' entry into cells. Our studies did not identify a sex-related ACE2 serum level correlation. The most common comorbidities were hypertension, cardiovascular diseases, respiratory diseases, and diabetes mellitus. All abovementioned comorbidities except respiratory diseases contribute to the severity of the disease and correlate with ACE2 blood serum levels.
Collapse
Affiliation(s)
- Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Anastasia Pak
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Svitlana Palii
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Yana Ivankiv
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Kateryna Kozak
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Mykhaylo Korda
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
12
|
Neves RL, Branquinho J, Arata JG, Bittencourt CA, Gomes CP, Riguetti M, da Mata GF, Fernandes DE, Icimoto MY, Kirsztajn GM, Pesquero JB. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm Res 2023; 72:1719-1731. [PMID: 37537367 DOI: 10.1007/s00011-023-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Jéssica Branquinho
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Clarissa Azevedo Bittencourt
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Caio Perez Gomes
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle Riguetti
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo Ferreira da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
di Filippo L, Uygur M, Locatelli M, Nannipieri F, Frara S, Giustina A. Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 2023; 80:669-683. [PMID: 36854858 PMCID: PMC9974397 DOI: 10.1007/s12020-023-03331-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Low vitamin D in COVID-19 have been related to worse outcomes. However, most of the studies conducted so far were not-controlled and retrospective, including biases potentially influencing this association. We evaluated 25(OH)vitamin D levels of patients with both severe and non-severe disease at hospital-admission, and in a cohort of control subjects. Moreover, we evaluated sACE-2 levels to investigate the mechanisms underlying the association between vitamin D and COVID-19. METHODS COVID-19 patients were enrolled in a matched for age, sex and comorbidities 1:1-ratio based on the presence/or not of respiratory-distress/severe-disease at hospital-admission. Control matched subjects were enrolled from an outpatient-setting. RESULTS Seventy-three COVID-19 patients (36 severe and 37 non-severe) and 30 control subjects were included. We observed a higher vitamin D deficiency (<20 ng/mL) prevalence in COVID-19 patients than control subjects (75% vs 43%). No differences were found regarding 25(OH)vitamin D and sACE-2 levels between patients with and without severe-disease at study entry. During the disease-course, in the severe group a life-threatening disease occurred in 17 patients (47.2%), and, in the non-severe group, a worsening disease occurred in 10 (27%). 25(OH)vitamin D levels, at admission, were negatively correlated with sACE-2 levels, and were lower in patients whose disease worsened as compared to those in whom it did not, independently from the disease severity at admission. In multivariate-analysis, lower 25(OH)vitamin D resulted as an independent risk factor for disease worsening. CONCLUSIONS 25(OH)vitamin D levels at hospital-admission strongly predicted the occurrence of worsening outcomes in COVID-19 independently of the disease severity at presentation.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Melin Uygur
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
14
|
Keller GA, Colaianni I, Coria J, Di Girolamo G, Miranda S. Clinical and biochemical short-term effects of hyperbaric oxygen therapy on SARS-Cov-2+ hospitalized patients with hypoxemic respiratory failure. Respir Med 2023; 209:107155. [PMID: 36796547 PMCID: PMC9927797 DOI: 10.1016/j.rmed.2023.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) has been proposed to address COVID-19- associated respiratory failure. However, its biochemical effects are poorly known. METHOD 50 patients with hypoxemic COVID-19 pneumonia were divided into C group (standard care) and H group (standard care plus HBOT). Blood was obtained at t = 0 and t = 5 days. Oxygen saturation (O2 Sat) was followed up. White blood cell (WC) count, lymphocytes (L) and platelets (P) and serum analysis (glucose, urea, creatinine, sodium, potassium, ferritin, D dimer, LDH and CRP) were carried out. Plasma levels of sVCAM, sICAM, sPselectin, SAA and MPO, and of cytokines (IL-1β, IL-1RA, IL-6, TNFα, IFNα, IFNγ, IL-15, VEGF, MIP1α, IL-12p70, IL-2 and IP-10) were measured by multiplex assays. Angiotensin Converting Enzyme 2 (ACE-2) levels were determined by ELISA. RESULTS The average basal O2 Sat was 85 ± 3%. The days needed to reach O2 Sat >90% were: H: 3 ± 1 and C: 5 ± 1 (P < 0,01). At term, H increased WC, L and P counts (all, H vs C: P < 0,01). Also, H diminished D dimer levels (H vs C, P < 0,001) and LDH concentration (H vs C, P < 0.01]. At term, H showed lower levels of sVCAM, sPselectin and SAA than C with respect to basal values (H vs C: ΔsVCAM: P < 0,01; ΔsPselectin: P < 0,05; ΔSAA: P < 0,01). Similarly, H showed diminished levels of TNFα (ΔTNFα: P < 0,05) and increased levels of IL-1RA and VEGF than C respect to basal values (H vs C: ΔIL-1RA and ΔVEGF: P < 0,05). CONCLUSION Patients underwent HBOT improved O2 Sat with lower levels of severity markers (WC and platelets count, D dimer, LDH, SAA). Moreover, HBOT reduced proinflammatory agents (sVCAM, sPselectin, TNFα) and increased anti-inflammatory and pro-angiogenic ones (IL-1RA and VEGF).
Collapse
Affiliation(s)
- Guillermo A Keller
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Vigilancia y Seguridad de Medicamentos, Argentina; Hospital General de Agudos Donación Francisco J. Santojanni, Departamento de Urgencias, Argentina
| | - Ivana Colaianni
- Hospital General de Agudos Donación Francisco J. Santojanni, Departamento de Urgencias, Argentina
| | - Javier Coria
- Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Argentina
| | - Guillermo Di Girolamo
- Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Argentina
| | - Silvia Miranda
- Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Argentina.
| |
Collapse
|
15
|
Beijnen EMS, Odumade OA, Haren SDV. Molecular Determinants of the Early Life Immune Response to COVID-19 Infection and Immunization. Vaccines (Basel) 2023; 11:vaccines11030509. [PMID: 36992093 DOI: 10.3390/vaccines11030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical manifestations from primary COVID infection in children are generally less severe as compared to adults, and severe pediatric cases occur predominantly in children with underlying medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19 in children is not negligible. Throughout the course of the pandemic, the case incidence in children has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic illness in children comparable to those in adults. Vaccination is a key approach to enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of children is functionally distinct from that of other age groups, vaccine development specific for the pediatric population has mostly been limited to dose-titration of formulations that were developed primarily for adults. In this review, we summarize the literature pertaining to age-specific differences in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions in how the early life immune system responds to infection and vaccination. Finally, we discuss recent advances in development of pediatric COVID-19 vaccines and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Oludare A Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA 02115, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
17
|
Úbeda M, Maza MDC, Delgado P, Horndler L, Abia D, García-Bermejo L, Serrano-Villar S, Calvo C, Bastolla U, Sainz T, Fresno M. Diversity of immune responses in children highly exposed to SARS-CoV-2. Front Immunol 2023; 14:1105237. [PMID: 36936972 PMCID: PMC10020361 DOI: 10.3389/fimmu.2023.1105237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Children are less susceptible than adults to symptomatic COVID-19 infection, but very few studies addressed their underlying cause. Moreover, very few studies analyzed why children highly exposed to the virus remain uninfected. Methods We analyzed the serum levels of ACE2, angiotensin II, anti-spike and anti-N antibodies, cytokine profiles, and virus neutralization in a cohort of children at high risk of viral exposure, cohabiting with infected close relatives during the lockdown in Spain. Results We analyzed 40 children who were highly exposed to the virus since they lived with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected relatives during the lockdown for several months without taking preventive measures. Of those, 26 reported mild or very mild symptoms. The induced immune response to the virus was analyzed 3 months after the household infection. Surprisingly, only 15 children had IgG anti-S (IgG+) determined by a sensitive method indicative of a past infection. The rest, negative for IgG anti-N or S in various tests, could be further subdivided, according to IgM antibodies, into those having IgM anti-S and IgM anti-N (IgG-IgMhigh) and those having only IgM anti-N (IgG-IgMlow). Interestingly, those two subgroups of children with IgM antibodies have strikingly different patterns of cytokines. The IgMhigh group had significantly higher IFN-α2 and IFN-γ levels as well as IL-10 and GM-CSF than the IgMlow group. In contrast, the IgMlow group had low levels of ACE2 in the serum. Both groups have a weaker but significant capacity to neutralize the virus in the serum than the IgG+ group. Two children were negative in all immunological antibody tests. Conclusions A significant proportion of children highly exposed to SARS-CoV-2 did not develop a classical adaptive immune response, defined by the production of IgG, despite being in close contact with infected relatives. A large proportion of those children show immunological signs compatible with innate immune responses (as secretion of natural antibodies and cytokines), and others displayed very low levels of the viral receptor ACE2 that may have protected them from the virus spreading in the body despite high and constant viral exposure.
Collapse
Affiliation(s)
- María Úbeda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Manuel Fresno, ; María Úbeda,
| | - María del Carmen Maza
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura García-Bermejo
- Hospital Universitario Ramón y Cajal, Universidad de Alcalá, IRYCIS, Madrid, Spain
| | | | - Cristina Calvo
- Department of Pediatrics, Tropical and Infectious Diseases, Hospital La Paz, and La Paz Research Institute (IdiPAZ), Translational Research Network of Pediatric Infectious Diseases (RITIP), and CIBERINFEC, Madrid, Spain
| | - Ugo Bastolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Talia Sainz
- Department of Pediatrics, Tropical and Infectious Diseases, Hospital La Paz, and La Paz Research Institute (IdiPAZ), Translational Research Network of Pediatric Infectious Diseases (RITIP), and CIBERINFEC, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa, Madrid, Spain
- *Correspondence: Manuel Fresno, ; María Úbeda,
| |
Collapse
|
18
|
Leowattana W, Leowattana T, Leowattana P. Circulating angiotensin converting enzyme 2 and COVID-19. World J Clin Cases 2022; 10:12470-12483. [PMID: 36579082 PMCID: PMC9791519 DOI: 10.12998/wjcc.v10.i34.12470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a widespread outbreak since December 2019. The SARS-CoV-2 infection-related illness has been dubbed the coronavirus disease 2019 (COVID-19) by the World Health Organization. Asymptomatic and subclinical infections, a severe hyper-inflammatory state, and mortality are all examples of clinical signs. After attaching to the angiotensin converting enzyme 2 (ACE2) receptor, the SARS-CoV-2 virus can enter cells through membrane fusion and endocytosis. In addition to enabling viruses to cling to target cells, the connection between the spike protein (S-protein) of SARS-CoV-2 and ACE2 may potentially impair the functionality of ACE2. Blood pressure is controlled by ACE2, which catalyzes the hydrolysis of the active vasoconstrictor octapeptide angiotensin (Ang) II to the heptapeptide Ang-(1-7) and free L-Phe. Additionally, Ang I can be broken down by ACE2 into Ang-(1-9) and metabolized into Ang-(1-7). Numerous studies have demonstrated that circulating ACE2 (cACE2) and Ang-(1-7) have the ability to restore myocardial damage in a variety of cardiovascular diseases and have anti-inflammatory, antioxidant, anti-apoptotic, and anti-cardiomyocyte fibrosis actions. There have been some suggestions for raising ACE2 expression in COVID-19 patients, which might be used as a target for the creation of novel treatment therapies. With regard to this, SARS-CoV-2 is neutralized by soluble recombinant human ACE2 (hrsACE2), which binds the viral S-protein and reduces damage to a variety of organs, including the heart, kidneys, and lungs, by lowering Ang II concentrations and enhancing conversion to Ang-(1-7). This review aims to investigate how the presence of SARS-CoV-2 and cACE2 are related. Additionally, there will be discussion of a number of potential therapeutic approaches to tip the ACE/ACE-2 balance in favor of the ACE-2/Ang-(1-7) axis.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Bangkok, Thailand
| |
Collapse
|
19
|
Aramini B, Masciale V, Samarelli AV, Tonelli R, Cerri S, Clini E, Stella F, Dominici M. Biological effects of COVID-19 on lung cancer: Can we drive our decisions. Front Oncol 2022; 12:1029830. [PMID: 36300087 PMCID: PMC9589049 DOI: 10.3389/fonc.2022.1029830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 infection caused by SARS-CoV-2 is considered catastrophic because it affects multiple organs, particularly those of the respiratory tract. Although the consequences of this infection are not fully clear, it causes damage to the lungs, the cardiovascular and nervous systems, and other organs, subsequently inducing organ failure. In particular, the effects of SARS-CoV-2-induced inflammation on cancer cells and the tumor microenvironment need to be investigated. COVID-19 may alter the tumor microenvironment, promoting cancer cell proliferation and dormant cancer cell (DCC) reawakening. DCCs reawakened upon infection with SARS-CoV-2 can populate the premetastatic niche in the lungs and other organs, leading to tumor dissemination. DCC reawakening and consequent neutrophil and monocyte/macrophage activation with an uncontrolled cascade of pro-inflammatory cytokines are the most severe clinical effects of COVID-19. Moreover, neutrophil extracellular traps have been demonstrated to activate the dissemination of premetastatic cells into the lungs. Further studies are warranted to better define the roles of COVID-19 in inflammation as well as in tumor development and tumor cell metastasis; the results of these studies will aid in the development of further targeted therapies, both for cancer prevention and the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
- *Correspondence: Beatrice Aramini,
| | - Valentina Masciale
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapy, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapy, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapy, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Therapeutic Approaches in COVID-19 Patients: The Role of the Renin-Angiotensin System. Can Respir J 2022; 2022:8698825. [PMID: 36199292 PMCID: PMC9529525 DOI: 10.1155/2022/8698825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022] Open
Abstract
Two and a half years after COVID-19 was first reported in China, thousands of people are still dying from the disease every day around the world. The condition is forcing physicians to adopt new treatment strategies while emphasizing continuation of vaccination programs. The renin-angiotensin system plays an important role in the development and progression of COVID-19 patients. Nonetheless, administration of recombinant angiotensin-converting enzyme 2 has been proposed for the treatment of the disease. The catalytic activity of cellular ACE2 (cACE2) and soluble ACE2 (sACE2) prevents angiotensin II and Des-Arg-bradykinin from accumulating in the body. On the other hand, SARS-CoV-2 mainly enters cells via cACE2. Thus, inhibition of ACE2 can prevent viral entry and reduce viral replication in host cells. The benefits of bradykinin inhibitors (BKs) have been reported in some COVID-19 clinical trials. Furthermore, the effects of cyclooxygenase (COX) inhibitors on ACE2 cleavage and prevention of viral entry into host cells have been reported in COVID-19 patients. However, the administration of COX inhibitors can reduce innate immune responses and have the opposite effect. A few studies suggest benefits of low-dose radiation therapy (LDR) in treating acute respiratory distress syndrome in COVID-19 patients. Nonetheless, radiation therapy can stimulate inflammatory pathways, resulting in adverse effects on lung injury in these patients. Overall, progress is being made in treating COVID-19 patients, but questions remain about which drugs will work and when. This review summarizes studies on the effects of a recombinant ACE2, BK and COX inhibitor, and LDR in patients with COVID-19.
Collapse
|
21
|
Vitiello A, Ferrara F. Pharmacotherapy Based on ACE2 Targeting and COVID-19 Infection. Int J Mol Sci 2022; 23:ijms23126644. [PMID: 35743089 PMCID: PMC9224264 DOI: 10.3390/ijms23126644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
The new SARS-CoV-2 coronavirus is responsible for the COVID-19 pandemic. A massive vaccination campaign, which is still ongoing, has averted most serious consequences worldwide; however, lines of research are continuing to identify the best drug therapies to treat COVID-19 infection. SARS-CoV-2 penetrates the cells of the host organism through ACE2. The ACE2 protein plays a key role in the renin–angiotensin system (RAS) and undergoes changes in expression during different stages of COVID-19 infection. It appears that an unregulated RAS is responsible for the severe lung damage that occurs in some cases of COVID-19. Pharmacologically modifying the expression of ACE2 could be an interesting line of research to follow in order to avoid the severe complications of COVID-19.
Collapse
Affiliation(s)
- Antonio Vitiello
- Pharmaceutical Department, Usl Umbria 1, Via XIV Settembre, 06132 Perugia, Italy;
| | - Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia Street 22, 80035 Naples, Italy
- Correspondence: ; Tel./Fax: +39-0813223622
| |
Collapse
|