1
|
Saravanan N, Demetris A, Fiel MI, Harrington C, Khurram NA, Schiano TD, Levitsky J. Serum and tissue biomarkers of plasma cell-rich rejection in liver transplant recipients. Am J Transplant 2025; 25:259-268. [PMID: 39393458 DOI: 10.1016/j.ajt.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The distinction between autoimmune and alloimmune reactions in liver transplant recipients can be challenging. Plasma cell-rich rejection (PCRR), previously known as de novo autoimmune hepatitis or plasma cell hepatitis, is an atypical and underrecognized form of allograft rejection observed post-liver transplantation, often in conjunction with features of T cell-mediated and antibody-mediated rejection. If PCRR is not recognized and treated with prompt immunosuppressive augmentation, patients can develop advanced hepatic fibrosis, necroinflammation, and allograft failure. Given the significant morbidity and mortality associated with PCRR, there exists a need to develop noninvasive biomarkers which can be used in screening, diagnosis, and treatment monitoring of PCRR. This study is a literature review of candidate serum-based and tissue-based biomarkers in adult and pediatric liver transplant PCRR. We also discuss biomarkers from plasma cell-rich processes observed in other disease states and other organ transplant recipients that might be tested in liver transplant PCRR. We conclude with proposed future directions in which biomarker implementation into clinical practice could lead to advances in personalized management of PCRR.
Collapse
Affiliation(s)
- Nivetha Saravanan
- Division of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anthony Demetris
- Division of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maria Isabel Fiel
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claire Harrington
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nigar Anjuman Khurram
- Division of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas D Schiano
- Division of Liver Diseases and Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Ye D, Liu Q, Zhang C, Dai E, Fan J, Wu L. Relationship between immune cells and the development of chronic lung allograft dysfunction. Int Immunopharmacol 2024; 137:112381. [PMID: 38865754 DOI: 10.1016/j.intimp.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
A major cause of death for lung transplant recipients (LTRs) is the advent of chronic lung allograft dysfunction (CLAD), which has long plagued the long-term post-transplant prognosis and quality of survival of transplant patients. The intricacy of its pathophysiology and the irreversibility of its illness process present major obstacles to the clinical availability of medications. Immunotherapeutic medications are available, but they only aim to slow down the course of CLAD rather than having any therapeutic impact on the disease's development. For this reason, understanding the pathophysiology of CLAD is essential for both disease prevention and proven treatment. The immunological response in particular, in relation to chronic lung allograft dysfunction, has received a great deal of interest recently. Innate immune cells like natural killer cells, eosinophils, neutrophils, and mononuclear macrophages, as well as adaptive immunity cells like T and B cells, play crucial roles in this process through the release of chemokines and cytokines. The present review delves into changes and processes within the immune microenvironment, with a particular focus on the quantity, subtype, and characteristics of effector immune cells in the peripheral and transplanted lungs after lung transplantation. We incorporate and solidify the documented role of immune cells in the occurrence and development of CLAD with the advancements in recent years.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongliang Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Fu J, Hsiao T, Waffarn E, Meng W, Long KD, Frangaj K, Jones R, Gorur A, Shtewe A, Li M, Muntnich CB, Rogers K, Jiao W, Velasco M, Matsumoto R, Kubota M, Wells S, Danzl N, Ravella S, Iuga A, Vasilescu ER, Griesemer A, Weiner J, Farber DL, Luning Prak ET, Martinez M, Kato T, Hershberg U, Sykes M. Dynamic establishment and maintenance of the human intestinal B cell population and repertoire following transplantation in a pediatric-dominated cohort. Front Immunol 2024; 15:1375486. [PMID: 39007142 PMCID: PMC11239347 DOI: 10.3389/fimmu.2024.1375486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Thomas Hsiao
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine D. Long
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kristjana Frangaj
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rebecca Jones
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alaka Gorur
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Areen Shtewe
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Muyang Li
- Department of Pathology, Columbia University, New York, NY, United States
| | - Constanza Bay Muntnich
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wenyu Jiao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Monica Velasco
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Steven Wells
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Shilpa Ravella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Alina Iuga
- Department of Pathology, Columbia University, New York, NY, United States
| | | | - Adam Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Joshua Weiner
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Tomoaki Kato
- Department of Surgery, Columbia University, New York, NY, United States
| | - Uri Hershberg
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Microbiology and Immunology, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Qian J, Xu Z, Yin M, Qin Z, Pinhu L. Bioinformatics analyses of immune-related genes and immune infiltration associated with lung ischemia-reperfusion injury. Transpl Immunol 2023; 81:101926. [PMID: 37652362 DOI: 10.1016/j.trim.2023.101926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a significant complication that can occur following lung transplantation and is known to contribute to poor prognosis. Our research aimed to investigate the potential molecular targets and mechanisms involved in lung IRI (LIRI), in order to improve our understanding of this condition. METHOD We downloaded gene expression datasets (GSE127003 and GSE18995) linked to LIRI from the GEO database. Using WGCNA, we identified LIRI-related modules. Functional enrichment analyses were performed on the modules showing significant correlation with LIRI. Core immune-related genes (IRGs) were identified and validated using the GSE18995 dataset. A rat LIRI model was established to validate the expression changes of core IRGs. The LIRI groups were subjected to 60 min of warm ischemia followed by 120 min of reperfusion. Additionally, the xCell algorithm was used to characterize the immune landscape and analyze the relationships between hub IRGs and infiltrating immune cells. RESULTS A total of 483 genes from the turquoise module were identified through WGCNA, with a predominant enrichment in immune- and inflammation-related pathways. Three IRGs (PTGS2, CCL2, and RELB) were found to be up-regulated after reperfusion in both GSE127003 and GSE18995 datasets, and this was further confirmed using the rat LIRI model. The xCell analysis revealed that immune score, CD8+ naive T cells, eosinophils, neutrophils, NK cells, and Tregs were upregulated after reperfusion. PTGS2, CCL2, and RELB showed positive correlations with CD8+ naive T cells, monocytes, neutrophils, and Tregs. CONCLUSION PTGS2, CCL2, and RELB were found to be potential biomarkers for LIRI. Immune and microenvironment scores were higher after reperfusion compared to before reperfusion. PTGS2, CCL2, and RELB appear to play a crucial role in the development of LIRI and may contribute to it by increasing the number of immune cells. Our findings offer new perspectives on potential treatment targets and the pathogenesis of LIRI.
Collapse
Affiliation(s)
- Jing Qian
- Department of Cardiothoracic Intensive Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhanyu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Mingjing Yin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhidan Qin
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liao Pinhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
6
|
Matsumoto H, Suzuki H, Yamanaka T, Kaiho T, Hata A, Inage T, Ito T, Kamata T, Tanaka K, Sakairi Y, Motohashi S, Yoshino I. Anti-CD20 Antibody and Calcineurin Inhibitor Combination Therapy Effectively Suppresses Antibody-Mediated Rejection in Murine Orthotopic Lung Transplantation. Life (Basel) 2023; 13:2042. [PMID: 37895424 PMCID: PMC10608275 DOI: 10.3390/life13102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Antibody-mediated rejection (AMR) is a risk factor for chronic lung allograft dysfunction, which impedes long-term survival after lung transplantation. There are no reports evaluating the efficacy of the single use of anti-CD20 antibodies (aCD20s) in addition to calcineurin inhibitors in preventing AMR. Thus, this study aimed to evaluate the efficacy of aCD20 treatment in a murine orthotopic lung transplantation model. Murine left lung transplantation was performed using a major alloantigen strain mismatch model (BALBc (H-2d) → C57BL/6 (BL/6) (H-2b)). There were four groups: isograft (BL/6→BL/6) (Iso control), no-medication (Allo control), cyclosporine A (CyA) treated, and CyA plus murine aCD20 (CyA+aCD20) treated groups. Severe neutrophil capillaritis, arteritis, and positive lung C4d staining were observed in the allograft model and CyA-only-treated groups. These findings were significantly improved in the CyA+aCD20 group compared with those in the Allo control and CyA groups. The B cell population in the spleen, lymph node, and graft lung as well as the levels of serum donor-specific IgM and interferon γ were significantly lower in the CyA+aCD20 group than in the CyA group. Calcineurin inhibitor-mediated immunosuppression combined with aCD20 therapy effectively suppressed AMR in lung transplantation by reducing donor-specific antibodies and complement activation.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
- Department of Thoracic Surgery, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu 292-8535, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Takahiro Yamanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Taisuke Kaiho
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Atsushi Hata
- Department of General Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; (A.H.); (T.I.)
| | - Terunaga Inage
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Takamasa Ito
- Department of General Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; (A.H.); (T.I.)
| | - Toshiko Kamata
- Department of Thoracic Surgery, International University of Health and Welfare Atami Hospital, Shizuoka 413-0012, Japan;
| | - Kazuhisa Tanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
- Department of General Thoracic Surgery, International University of Health and Welfare Narita Hospital, Chiba 286-8520, Japan
| |
Collapse
|
7
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Adaptive Immunosuppression in Lung Transplant Recipients Applying Complementary Biomarkers: The Zurich Protocol. Medicina (B Aires) 2023; 59:medicina59030488. [PMID: 36984489 PMCID: PMC10054078 DOI: 10.3390/medicina59030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Achieving adequate immunosuppression for lung transplant recipients in the first year after lung transplantation is a key challenge. Prophylaxis of allograft rejection must be balanced with the adverse events associated with immunosuppressive drugs, for example infection, renal failure, and diabetes. A triple immunosuppressive combination is standard, including a steroid, a calcineurin inhibitor, and an antiproliferative compound beginning with the highest levels of immunosuppression and a subsequent tapering of the dose, usually guided by therapeutic drug monitoring and considering clinical results, bronchoscopy sampling results, and additional biomarkers such as serum viral replication or donor-specific antibodies. Balancing the net immunosuppression level required to prevent rejection without overly increasing the risk of infection and other complications during the tapering phase is not well standardized and requires repeated assessments for dose-adjustments. In our adaptive immunosuppression approach, we additionally consider results from the white blood cell counts, in particular lymphocytes and eosinophils, as biomarkers for monitoring the level of immunosuppression and additionally use them as therapeutic targets to fine-tune the immunosuppressive strategy over time. The concept and its rationale are outlined, and areas of future research mentioned.
Collapse
|
9
|
Patterson CM, Jolly EC, Burrows F, Ronan NJ, Lyster H. Conventional and Novel Approaches to Immunosuppression in Lung Transplantation. Clin Chest Med 2023; 44:121-136. [PMID: 36774159 DOI: 10.1016/j.ccm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Most therapeutic advances in immunosuppression have occurred over the past few decades. Although modern strategies have been effective in reducing acute cellular rejection, excess immunosuppression comes at the price of toxicity, opportunistic infection, and malignancy. As our understanding of the immune system and allograft rejection becomes more nuanced, there is an opportunity to evolve immunosuppression protocols to optimize longer term outcomes while mitigating the deleterious effects of traditional protocols.
Collapse
Affiliation(s)
- Caroline M Patterson
- Transplant Continuing Care Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Elaine C Jolly
- Division of Renal Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fay Burrows
- Department of Pharmacy, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nicola J Ronan
- Transplant Continuing Care Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Haifa Lyster
- Cardiothoracic Transplant Unit, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; Kings College, London, United Kingdom; Pharmacy Department, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
10
|
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, Islam MT, Sharifi-Rad J, Calina D, Cho WC. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22:284. [PMID: 36109789 PMCID: PMC9476305 DOI: 10.1186/s12935-022-02706-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The PI3K-Akt-mechanistic (formerly mammalian) target of the rapamycin (mTOR) signaling pathway is important in a variety of biological activities, including cellular proliferation, survival, metabolism, autophagy, and immunity. Abnormal PI3K-Akt-mTOR signalling activation can promote transformation by creating a cellular environment conducive to it. Deregulation of such a system in terms of genetic mutations and amplification has been related to several human cancers. Consequently, mTOR has been recognized as a key target for the treatment of cancer, especially for treating cancers with elevated mTOR signaling due to genetic or metabolic disorders. In vitro and in vivo, rapamycin which is an immunosuppressant agent actively suppresses the activity of mTOR and reduces cancer cell growth. As a result, various sirolimus-derived compounds have now been established as therapies for cancer, and now these medications are being investigated in clinical studies. In this updated review, we discuss the usage of sirolimus-derived compounds and other drugs in several preclinical or clinical studies as well as explain some of the challenges involved in targeting mTOR for treating various human cancers.
Collapse
Affiliation(s)
- Eunus S. Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042 Australia
- Gaco Pharmaceuticals, Dhaka, 1000 Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611 USA
| | - Kangkana Mitra
- Faculty of Medicine and Pharmacy, Université Grenoble Alpes, Grenoble, France
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA 22030 USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100 Pakistan
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
11
|
Crane C, Loop L, Anterasian C, Geng B, Ingulli E. Balancing B cell responses to the allograft: implications for vaccination. Front Immunol 2022; 13:948379. [PMID: 35967363 PMCID: PMC9363634 DOI: 10.3389/fimmu.2022.948379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Balancing enough immunosuppression to prevent allograft rejection and yet maintaining an intact immune system to respond to vaccinations, eliminate invading pathogens or cancer cells is an ongoing challenge to transplant physicians. Antibody mediated allograft rejection remains problematic in kidney transplantation and is the most common cause of graft loss despite current immunosuppressive therapies. The goal of immunosuppressive therapies is to prevent graft rejection; however, they prevent optimal vaccine responses as well. At the center of acute and chronic antibody mediated rejection and vaccine responses is the B lymphocyte. This review will highlight the role of B cells in alloimmune responses including the dependency on T cells for antibody production. We will discuss the need to improve vaccination rates in transplant recipients and present data on B cell populations and SARS-CoV-2 vaccine response rates in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Clarkson Crane
- Department of Pediatrics, Division of Pediatric Nephrology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
| | - Lauren Loop
- Department of Pediatrics, Division of Allergy and Immunology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
| | - Christine Anterasian
- Department of Pediatrics, Division of Allergy and Immunology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital, Seattle, WA, United States
| | - Bob Geng
- Department of Pediatrics, Division of Allergy and Immunology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
| | - Elizabeth Ingulli
- Department of Pediatrics, Division of Pediatric Nephrology, University of California at San Diego and Rady Children’s Hospital, San Diego, CA, United States
- *Correspondence: Elizabeth Ingulli,
| |
Collapse
|