1
|
Zhu L, Huang B, Wang X, Ni F, Ao M, Wang R, Zheng B, Chen C, Xue J, Zhu L, Yang C, Shi L, Geng S, Hu J, Yang M, Zhang D, Yang P, Li M, Li Y, Hu Q, Ye S, Zheng P, Wei H, Wu Z, Zhang L, Wang Y, Liu Y, Wu X. Highly potent and broadly neutralizing anti-CD4 trimeric nanobodies inhibit HIV-1 infection by inducing CD4 conformational alteration. Nat Commun 2024; 15:6961. [PMID: 39138183 PMCID: PMC11322561 DOI: 10.1038/s41467-024-51414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Despite advancements in antiretroviral therapy (ART) suppressing HIV-1 replication, existing antiviral drugs pose limitations, including lifelong medication, frequent administration, side effects and viral resistance, necessitating novel HIV-1 treatment approaches. CD4, pivotal for HIV-1 entry, poses challenges for drug development due to neutralization and cytotoxicity concerns. Nevertheless, Ibalizumab, the sole approved CD4-specific antibody for HIV-1 treatment, reignites interest in exploring alternative anti-HIV targets, emphasizing CD4's potential value for effective drug development. Here, we explore anti-CD4 nanobodies, particularly Nb457 from a CD4-immunized alpaca. Nb457 displays high potency and broad-spectrum activity against HIV-1, surpassing Ibalizumab's efficacy. Strikingly, engineered trimeric Nb457 nanobodies achieve complete inhibition against live HIV-1, outperforming Ibalizumab and parental Nb457. Structural analysis unveils Nb457-induced CD4 conformational changes impeding viral entry. Notably, Nb457 demonstrates therapeutic efficacy in humanized female mouse models. Our findings highlight anti-CD4 nanobodies as promising HIV-1 therapeutics, with potential implications for advancing clinical treatment against this global health challenge.
Collapse
Affiliation(s)
- Linjing Zhu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, P.R. China
- Abrev Biotechnology Co. Ltd., Nanjing, P.R. China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China
| | - Xiangyao Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life sciences, Tianjin University, Tianjin, P.R. China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijin, P.R. China
| | - Mingjun Ao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, P.R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Chen Chen
- Department of Infection, Nanjing Hospital Affiliated to Nanjing university of Chinese Medicine, Nanjing, P.R. China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lin Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chenbo Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lingen Shi
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China
| | - Shengya Geng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China
- MOE Key Laboratory of Model Animals for Disease Study, Medical School, Nanjing University, Nanjing, P.R. China
| | - Jiaqian Hu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China
| | - Mengshi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Doudou Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China
| | - Ping Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijin, P.R. China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijin, P.R. China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life sciences, Tianjin University, Tianjin, P.R. China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Hongxia Wei
- Department of Infection, Nanjing Hospital Affiliated to Nanjing university of Chinese Medicine, Nanjing, P.R. China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, P.R. China.
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia, P.R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, P.R. China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, P.R. China.
| | - Yaxin Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life sciences, Tianjin University, Tianjin, P.R. China.
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, P.R. China.
- Hubei Jiangxia Laboratory, Wuhan, P.R. China.
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, P.R. China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, P.R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, P.R. China.
| |
Collapse
|
2
|
Focosi D. Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities. Curr Top Microbiol Immunol 2024. [PMID: 39126484 DOI: 10.1007/82_2024_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Monoclonal antibodies targeting the Spike protein of SARS-CoV-2 have been widely deployed in the ongoing COVID-19 pandemic. I review here the impact of those therapeutics in the early pandemic, ranging from structural classification to outcomes in clinical trials to in vitro and in vivo evidence of basal and treatment-emergent immune escape. Unfortunately, the Omicron variant of concern has completely reset all achievements so far in mAb therapy for COVID-19. Despite the intrinsic limitations of this strategy, future developments such as respiratory delivery of further engineered mAb cocktails could lead to improved outcomes.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
3
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
4
|
Liu ML, Liang XM, Jin MY, Huang HW, Luo L, Wang H, Shen X, Xu ZL. Food-Borne Biotoxin Neutralization in Vivo by Nanobodies: Current Status and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10753-10771. [PMID: 38706131 DOI: 10.1021/acs.jafc.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ming-Yu Jin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
- School of Life and Health Technology, Dongguan, University of Technology, Dongguan 523808, China
| | - Hui-Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Pagneux Q, Garnier N, Fabregue M, Sharkaoui S, Mazzoli S, Engelmann I, Boukherroub R, Strecker M, Cruz E, Ducos P, Szunerits S, Zarubica A, Suderman R. Neutralization of SARS-CoV-2 and Intranasal Protection of Mice with a nanoCLAMP Antibody Mimetic. ACS Pharmacol Transl Sci 2024; 7:757-770. [PMID: 38481677 PMCID: PMC10928885 DOI: 10.1021/acsptsci.3c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2025]
Abstract
Intranasal treatment, combined with vaccination, has the potential to slow mutational evolution of viruses by reducing transmission and replication. Here, we illustrate the development of a SARS-CoV-2 receptor-binding domain (RBD) nanoCLAMP and demonstrate its potential as an intranasally administered therapeutic. A multi-epitope nanoCLAMP was made by fusing a pM affinity single-domain nanoCLAMP (P2710) to alternate epitope-binding nanoCLAMP, P2609. The resulting multimerized nanoCLAMP P2712 had sub-pM affinity for the Wuhan and South African (B.1.351) RBD (KD < 1 pM) and decreasing affinity for the Delta (B.1.617.2) and Omicron (B.1.1.529) variants (86 pM and 19.7 nM, respectively). P2712 potently inhibited the ACE2:RBD interaction, suggesting its utility as a therapeutic. With an IC50 = 0.4 ± 0.1 nM obtained from neutralization experiments using pseudoviral particles, nanoCLAMP P2712 protected K18-hACE2 mice from SARS-CoV-2 infection, reduced viral loads in the lungs and brains, and reduced associated upregulation of inflammatory cytokines and chemokines. Together, our findings warrant further investigation into the development of nanoCLAMPs as effective intranasally delivered COVID-19 therapeutics.
Collapse
Affiliation(s)
- Quentin Pagneux
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Nathalie Garnier
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratoire
de Virologie ULR3610 , Univ. Lille, CHU
Lille, F-59000 Lille, France
| | - Manon Fabregue
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Sarah Sharkaoui
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Sophie Mazzoli
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Ilka Engelmann
- Pathogenesis
and Control of Chronic and Emerging Infections, INSERM, EFS, L'Université des Antilles, Université
de Montpellier, Laboratoire de Virologie, CHU Montellier, 34295 Montpellier, France
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Mary Strecker
- Regis
University, Denver, Colorado 80221, United States
| | - Eric Cruz
- Celerion,
Inc., 621 Rose Street, Lincoln, Nebraska 68502, United States
| | - Peter Ducos
- Department
of Biochemistry, Madison, Wisconsin 53706, United States
| | - Sabine Szunerits
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Ana Zarubica
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Richard Suderman
- Nectagen,
Inc., 2029 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
6
|
Ji M, Hu J, Zhang D, Huang B, Xu S, Jiang N, Chen Y, Wang Y, Wu X, Wu Z. Inhibition of SFTSV replication in humanized mice by a subcutaneously administered anti-PD1 nanobody. EMBO Mol Med 2024; 16:575-595. [PMID: 38366162 PMCID: PMC10940662 DOI: 10.1038/s44321-024-00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jiaqian Hu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Doudou Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Y-Clone Medical Science Co. Ltd., Suzhou, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China.
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China.
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Focosi D, Maggi F. Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccin Immunother 2023; 19:2260040. [PMID: 37799070 PMCID: PMC10561570 DOI: 10.1080/21645515.2023.2260040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Convalescent plasma has been extensively tested during the COVID-19 pandemic as a transfusion product. Similarly, monoclonal antibodies have been largely administered either intravenously or intramuscularly. Nevertheless, when used against a respiratory pathogen, respiratory delivery is preferable to maximize the amount of antibody that reaches the entry door in order to prevent sustained viral multiplication. In this narrative review, we review the different types of inhalation device and summarize evidence from animal models and early clinical trials supporting the respiratory delivery (for either prophylactic or therapeutic purposes) of convalescent plasma or monoclonal antibodies (either full antibodies, single-chain variable fragments, or camelid-derived monoclonal heavy-chain only antibodies). Preliminary evidences from animal models suggest similar safety and noninferior efficacy, but efficacy evaluation from clinical trials is still limited.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani IRCCS”, Rome, Italy
| |
Collapse
|
8
|
Naidoo DB, Chuturgoon AA. The Potential of Nanobodies for COVID-19 Diagnostics and Therapeutics. Mol Diagn Ther 2023; 27:193-226. [PMID: 36656511 PMCID: PMC9850341 DOI: 10.1007/s40291-022-00634-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
The infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Globally, there have been millions of infections and fatalities. Unfortunately, the virus has been persistent and a contributing factor is the emergence of several variants. The urgency to combat COVID-19 led to the identification/development of various diagnosis (polymerase chain reaction and antigen tests) and treatment (repurposed drugs, convalescent plasma, antibodies and vaccines) options. These treatments may treat mild symptoms and decrease the risk of life-threatening disease. Although these options have been fairly beneficial, there are some challenges and limitations, such as cost of tests/drugs, specificity, large treatment dosages, intravenous administration, need for trained personal, lengthy production time, high manufacturing costs, and limited availability. Therefore, the development of more efficient COVID-19 diagnostic and therapeutic options are vital. Nanobodies (Nbs) are novel monomeric antigen-binding fragments derived from camelid antibodies. Advantages of Nbs include low immunogenicity, high specificity, stability and affinity. These characteristics allow for rapid Nb generation, inexpensive large-scale production, effective storage, and transportation, which is essential during pandemics. Additionally, the potential aerosolization and inhalation delivery of Nbs allows for targeted treatment delivery as well as patient self-administration. Therefore, Nbs are a viable option to target SARS-CoV-2 and overcome COVID-19. In this review we discuss (1) COVID-19; (2) SARS-CoV-2; (3) the present conventional COVID-19 diagnostics and therapeutics, including their challenges and limitations; (4) advantages of Nbs; and (5) the numerous Nbs generated against SARS-CoV-2 as well as their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Dhaneshree Bestinee Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of Kwa-Zulu Natal, Durban, 4013, South Africa.
| |
Collapse
|
9
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Voronina DV, Shcheblyakov DV, Favorskaya IA, Esmagambetov IB, Dzharullaeva AS, Tukhvatulin AI, Zubkova OV, Popova O, Kan VY, Bandelyuk AS, Shmarov MM, Logunov DY, Naroditskiy BS, Gintsburg AL. Cross-Reactive Fc-Fused Single-Domain Antibodies to Hemagglutinin Stem Region Protect Mice from Group 1 Influenza a Virus Infection. Viruses 2022; 14:v14112485. [PMID: 36366583 PMCID: PMC9698552 DOI: 10.3390/v14112485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
The continued evolution of influenza viruses reduces the effectiveness of vaccination and antiviral drugs. The identification of novel and universal agents for influenza prophylaxis and treatment is an urgent need. We have previously described two potent single-domain antibodies (VHH), G2.3 and H1.2, which bind to the stem domain of hemagglutinin and efficiently neutralize H1N1 and H5N2 influenza viruses in vivo. In this study, we modified these VHHs with Fc-fragment to enhance their antiviral activity. Reformatting of G2.3 into bivalent Fc-fusion molecule increased its in vitro neutralizing activity against H1N1 and H2N3 viruses up to 80-fold and, moreover, resulted in obtaining the ability to neutralize H5N2 and H9N2 subtypes. We demonstrated that a dose as low as 0.6 mg/kg of G2.3-Fc or H1.2-Fc administered systemically or locally before infection could protect mice from lethal challenges with both H1N1 and H5N2 viruses. Furthermore, G2.3-Fc reduced the lung viral load to an undetectable level. Both VHH-Fc antibodies showed in vivo therapeutic efficacy when delivered via systemic or local route. The findings support G2.3-Fc as a potential therapeutic agent for both prophylaxis and therapy of Group 1 influenza A infection.
Collapse
Affiliation(s)
- Daria V. Voronina
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
- Correspondence:
| | - Dmitry V. Shcheblyakov
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Irina A. Favorskaya
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Ilias B. Esmagambetov
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Alina S. Dzharullaeva
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Amir I. Tukhvatulin
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Olga V. Zubkova
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Olga Popova
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Vladislav Y. Kan
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Alina S. Bandelyuk
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Maxim M. Shmarov
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Denis Y. Logunov
- Medical Microbiology Department, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Boris S. Naroditskiy
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Aleksandr L. Gintsburg
- Department of Genetics and Molecular Biology of Bacteria, National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| |
Collapse
|