1
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Yang Z, Tian C, He Z, Zhu X, He J, Pan H, Li Y, Ruan G, Wu X, Pan X. Mesenchymal stem cells reverse thymus aging by reprogramming the DNA methylation of thymic epithelial cells. Regen Ther 2024; 27:126-169. [PMID: 38571892 PMCID: PMC10988135 DOI: 10.1016/j.reth.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Background A decrease in the number and activity of thymic epithelial cells (TECs) is an important factor in thymic degeneration. Mesenchymal stem cells (MSCs) treating thymic ageing is a promising strategy, but the DNA methylation modification mechanism in TECs remains unclear. Methods Aged rhesus monkeys were treated with MSCs to establish a thymic senescence model, and hematoxylin-eosin (HE) staining, immunofluorescence staining, and ELISA were performed to observe the structure and function of the thymus. TEC aging model and MSCs co-culture system were established to detect DNA methylation modification and transcriptomic changes, correlation analysis between transcription factor methylation and mRNA expression, and q-PCR, immunofluorescence staining, and Western blot were used to identified key genes. Results MSCs improved the structure and function of thymus in elderly macaque monkeys; reduced the expression levels of β-Gal, P16, and P21; and increased the activity of aging TECs. There were 501 genes with increased methylation in the promoter region in the treated group compared with the untreated group, among which 23 genes were involved in the negative regulation of cell growth, proliferation and apoptosis, while 591 genes had decreased methylation, among which 37 genes were associated with promoting cell growth and proliferation and inhibiting apoptosis. Furthermore, 66 genes showed a negative correlation between promoter methylation levels and gene transcription; specifically, PDE5A, DUOX2, LAMP1 and SVIL were downregulated with increased methylation, inhibiting growth and development, while POLR3G, PGF, CHTF18, KRT17, FOXJ1, NGF, DYRK3, LRP8, CDT1, PRELID1, F2R, KNTC1 and TRIM3 were upregulated with decreased methylation, promoting cell growth. Conclusion MSCs improve the structure and function of aged thymus, which involves the regulation of DNA methylation profiles and a decrease in the methylation level of the transcription factor NGF to specifically upregulate KRT17 and FOXJ1 to promote the proliferation of TECs.
Collapse
Affiliation(s)
- Zailing Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- The Second Peoples Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou Province, China
| | - Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Jie He
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Hang Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Ye Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Guangping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - XiJun Wu
- The Second Peoples Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou Province, China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| |
Collapse
|
3
|
Mašek J, Filipovic I, Van Hul N, Belicová L, Jiroušková M, Oliveira DV, Frontino AM, Hankeova S, He J, Turetti F, Iqbal A, Červenka I, Sarnová L, Verboven E, Brabec T, Björkström NK, Gregor M, Dobeš J, Andersson ER. Jag1 insufficiency alters liver fibrosis via T cell and hepatocyte differentiation defects. EMBO Mol Med 2024; 16:2946-2975. [PMID: 39358604 PMCID: PMC11554675 DOI: 10.1038/s44321-024-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Belicová
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Markéta Jiroušková
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Daniel V Oliveira
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Anna Maria Frontino
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Fabio Turetti
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Igor Červenka
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Sarnová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| |
Collapse
|
4
|
James KD, Cosway EJ, Parnell SM, White AJ, Jenkinson WE, Anderson G. Assembling the thymus medulla: Development and function of epithelial cell heterogeneity. Bioessays 2024; 46:e2300165. [PMID: 38161233 PMCID: PMC11475500 DOI: 10.1002/bies.202300165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The thymus is a unique primary lymphoid organ that supports the production of self-tolerant T-cells essential for adaptive immunity. Intrathymic microenvironments are microanatomically compartmentalised, forming defined cortical, and medullary regions each differentially supporting critical aspects of thymus-dependent T-cell maturation. Importantly, the specific functional properties of thymic cortical and medullary compartments are defined by highly specialised thymic epithelial cells (TEC). For example, in the medulla heterogenous medullary TEC (mTEC) contribute to the enforcement of central tolerance by supporting deletion of autoreactive T-cell clones, thereby counterbalancing the potential for random T-cell receptor generation to contribute to autoimmune disease. Recent advances have further shed light on the pathways and mechanisms that control heterogeneous mTEC development and how differential mTEC functionality contributes to control self-tolerant T-cell development. Here we discuss recent findings in relation to mTEC development and highlight examples of how mTEC diversity contribute to thymus medulla function.
Collapse
Affiliation(s)
- Kieran D. James
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Emilie J. Cosway
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | | | - Graham Anderson
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| |
Collapse
|
5
|
Patel SK, Zhdanovskaya N, Sergio I, Cardinale A, Rosichini M, Varricchio C, Pace E, Capalbo C, Locatelli F, Macone A, Velardi E, Palermo R, Felli MP. Thymic-Epithelial-Cell-Dependent Microenvironment Influences Proliferation and Apoptosis of Leukemic Cells. Int J Mol Sci 2024; 25:1412. [PMID: 38338689 PMCID: PMC10855934 DOI: 10.3390/ijms25031412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.
Collapse
Affiliation(s)
- Sandesh Kumar Patel
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Antonella Cardinale
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Claudia Varricchio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 12631 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00161 Roma, Italy;
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.C.); (M.R.); (F.L.); (E.V.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (S.K.P.); (N.Z.); (C.V.); (E.P.); (C.C.); (R.P.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
6
|
Li YR, Zúñiga-Pflücker JC. Thymus aging and immune reconstitution, progresses and challenges. Semin Immunol 2023; 70:101837. [PMID: 37659170 DOI: 10.1016/j.smim.2023.101837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Thymus is a primary lymphoid organ essential for the development of T lymphocytes. Age-related thymic involution is a prominent feature of immune senescence. The thymus undergoes rapid growth during fetal and neonatal development, peaks in size before puberty and then begins to undergo a decrease in cellularity with age. Dramatic changes occur with age-associated thymic involution. The most prominent features of thymic involution include: (i) epithelial structure disruption, (ii) adipogenesis, and (iii) thymocyte development arrest. There is a sex disparity in thymus aging. It is a multifactorial process controlled and regulated by a series of molecules, including the transcription factor FOXN1, fibroblast and keratinocyte growth factors (FGF and KGF, respectively), sex steroids, Notch signaling, WNT signaling, and microRNAs. Nevertheless, there is still no satisfactory evolutionary or physiological explanation for age-associated thymic involution, and understanding the precise mechanism(s) for thymus aging remains challenging. Sustained thymic regeneration has yet to be achieved by sex steroid ablation. Recent preclinical studies indicate that long-term thymic reconstitution can be achieved via adoptive transfer of in vitro-generated progenitor T (proT) cells, and improvements in the methods for the generation of human proT cells make this an attractive approach. Future clinical applications may rely on new applications integrating proT cells, cytokine support and sex-steroid inhibition treatments.
Collapse
Affiliation(s)
- Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Lucas B, White AJ, Klein F, Veiga-Villauriz C, Handel A, Bacon A, Cosway EJ, James KD, Parnell SM, Ohigashi I, Takahama Y, Jenkinson WE, Hollander GA, Lu WY, Anderson G. Embryonic keratin19 + progenitors generate multiple functionally distinct progeny to maintain epithelial diversity in the adult thymus medulla. Nat Commun 2023; 14:2066. [PMID: 37045811 PMCID: PMC10097809 DOI: 10.1038/s41467-023-37589-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The thymus medulla is a key site for immunoregulation and tolerance, and its functional specialisation is achieved through the complexity of medullary thymic epithelial cells (mTEC). While the importance of the medulla for thymus function is clear, the production and maintenance of mTEC diversity remains poorly understood. Here, using ontogenetic and inducible fate-mapping approaches, we identify mTEC-restricted progenitors as a cytokeratin19+ (K19+) TEC subset that emerges in the embryonic thymus. Importantly, labelling of a single cohort of K19+ TEC during embryogenesis sustains the production of multiple mTEC subsets into adulthood, including CCL21+ mTEClo, Aire+ mTEChi and thymic tuft cells. We show K19+ progenitors arise prior to the acquisition of multiple mTEC-defining features including RANK and CCL21 and are generated independently of the key mTEC regulator, Relb. In conclusion, we identify and define a multipotent mTEC progenitor that emerges during embryogenesis to support mTEC diversity into adult life.
Collapse
Affiliation(s)
- Beth Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea J White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Klein
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Clara Veiga-Villauriz
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Adam Handel
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emilie J Cosway
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Izumi Ohigashi
- Institute for Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, NCI/NIH, Bethesda, USA
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Georg A Hollander
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wei-Yu Lu
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|