1
|
Sedaghat-Rostami E, Carr BV, Yang L, Keep S, Lean FZX, Atkinson I, Fones A, Paudyal B, Kirk J, Vatzia E, Gubbins S, Bickerton E, Briggs E, Núñez A, McNee A, Moffat K, Freimanis G, Rollier C, Muir A, Richard AC, Angelopoulos N, Gerner W, Tchilian E. Porcine respiratory coronavirus as a model for acute respiratory disease: mechanisms of different infection outcomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf066. [PMID: 40304579 DOI: 10.1093/jimmun/vkaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Porcine respiratory coronavirus (PRCV) is a naturally occurring pneumotropic coronavirus in the pig, providing a valuable large animal model to study acute respiratory disease. PRCV pathogenesis and the resulting immune response were investigated in pigs, the natural large animal host. We compared 2 strains, ISU-1 and 135, which induced differing levels of pathology in the respiratory tract to elucidate the mechanisms leading to mild or severe disease. The 135 strain induced greater pathology which was associated with higher viral load and stronger spike-specific antibody and T-cell responses. In contrast, the ISU-1 strain triggered mild pathology with a more balanced immune response and greater abundance of T regulatory cells. A higher frequency of putative T follicular helper cells was observed in animals infected with strain 135 at 11 days postinfection. Single-cell RNA-sequencing of bronchoalveolar lavage revealed differential gene expression in B and T cells between animals infected with 135 and ISU-1 at 1 day postinfection. These genes were associated with cell adhesion, migration, and immune regulation. Along with increased IL-6 and IL-12 production, these data indicate that heightened inflammatory responses to the 135 strain may contribute to pronounced pneumonia. Among bronchoalveolar lavage (BAL) immune cell populations, B cells and plasma cells exhibited the most gene expression divergence between pigs infected with different PRCV strains, highlighting their role in maintaining immune homeostasis in the respiratory tract. These findings indicate the potential of the PRCV model for studying coronavirus-induced respiratory disease and identifying mechanisms that determine infection outcomes.
Collapse
Affiliation(s)
- Ehsan Sedaghat-Rostami
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, United Kingdom
| | | | - Liu Yang
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Sarah Keep
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Fabian Z X Lean
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Isabella Atkinson
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Albert Fones
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Basudev Paudyal
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - James Kirk
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Eleni Vatzia
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Simon Gubbins
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Erica Bickerton
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Emily Briggs
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, United Kingdom
| | - Alejandro Núñez
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Adam McNee
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Katy Moffat
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Graham Freimanis
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Christine Rollier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guilford, United Kingdom
| | - Andrew Muir
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Nicos Angelopoulos
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Wilhelm Gerner
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Elma Tchilian
- Host response, The Pirbright Institute, Pirbright, Woking, United Kingdom
| |
Collapse
|
2
|
Lean FZ, Gallo G, Newman J, Ackroyd S, Spiro S, Cox R, Nymo IH, Bröjer C, Neimanis A, Suárez-Bonnet A, Priestnall SL, Everest H, Keep S, Bailey D, Delahay RJ, Seekings AH, McElhinney LM, Brookes SM, Núñez A. Distribution of aminopeptidase N coronavirus receptors in the respiratory and digestive tracts of domestic and wild artiodactyls and carnivores. J Gen Virol 2025; 106:002092. [PMID: 40184164 PMCID: PMC11971486 DOI: 10.1099/jgv.0.002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Aminopeptidase N (APN) is a transmembrane protein that mediates the attachment of the spike protein of several clinically important coronaviruses (CoVs) responsible for respiratory and intestinal diseases in animals and humans. To assess the potential for APN-mediated viral tropism, we characterized APN receptor distribution in the respiratory and intestinal tissues of various artiodactyls (cervids, bovids, camelids and suids) and carnivores (canids, felids, mustelids and phocids) using immunohistochemistry. In the lungs, APN expression was limited to artiodactyls, with strong expression in the bronchiolar epithelium and weaker expression in pneumocytes. Nasal turbinate and tracheal samples, where available, showed stronger APN expression in artiodactyls over carnivores. APN was consistently detected on the microvilli of enterocytes in the small intestine across multiple taxa, while the presence in the colon was more variable. Of the animals examined, pig and alpaca consistently expressed the most abundant APN in the upper and lower respiratory tract. In silico evaluation of APN orthologue sequences from humans, artiodactyls and carnivores identified distinct evolutionary relationships. Further in silico binding predictions for alpaca alphacoronavirus and human coronavirus 229E with cognate and heterologous alpaca and human APN revealed substantial overlapping binding footprints with high conservation of amino acid residues, suggesting an evolutionary divergence and subsequent adaptation of a 229E-like or ancestral virus within a non-human animal host. This combined anatomical and in silico approach enhances understanding of host susceptibility, tissue tropism and viral transmission mechanisms in APN-dependent CoVs and has the potential to inform future strategies for disease modelling, surveillance and control.
Collapse
Affiliation(s)
- Fabian Z.X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, UK
| | | | | | - Stuart Ackroyd
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, UK
| | | | - Ruth Cox
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | | | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, Swedish Veterinary Agency, Uppsala, Sweden
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, Swedish Veterinary Agency, Uppsala, Sweden
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, UK
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, UK
| | | | | | | | - Richard J. Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, UK
| | | | | | | | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
3
|
Olech M, Antas M. Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics-An Updated Overview. Viruses 2025; 17:493. [PMID: 40284936 PMCID: PMC12031570 DOI: 10.3390/v17040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) are enveloped, single-stranded RNA viruses belonging to the genus Alphacoronavirus in the family Coronaviridae. PRCV, a TGEV mutant with a spike(S) gene deletion, exhibits altered tissue tropism. TGEV replicates mainly in the intestines and causes severe diarrhea and high mortality in piglets, whereas PRCV replicates mainly in the respiratory tract. PRCV causes mild or subclinical respiratory infections but may contribute to respiratory disease syndrome in pigs infected with other respiratory pathogens. As PRCV and TGEV continuously evolve, monitoring these viruses is important for disease prevention and control. In this review, we provide updated information on the prevalence and genetic characteristics of TGEV/PRCV and their phylogenetic relationships. We also discuss the impact of mutations, deletions and recombination on the virulence and tissue tropism of TGEV/PRCV and highlight the possible zoonotic potential of these viruses.
Collapse
Affiliation(s)
- Monika Olech
- Department of Research Support, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Pulawy, Poland
| | - Marta Antas
- National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Pulawy, Poland;
| |
Collapse
|
4
|
Bedsted AE, Goecke NB, Hjulsager CK, Ryt-Hansen P, Larsen KC, Rasmussen TB, Bøtner A, Larsen LE, Belsham GJ. High-throughput screening for respiratory pathogens within pigs in Denmark; analysis of circulating porcine respiratory coronaviruses and their association with other pathogens. Virus Res 2024; 350:199501. [PMID: 39566828 PMCID: PMC11629333 DOI: 10.1016/j.virusres.2024.199501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Porcine respiratory coronavirus (PRCV) typically causes subclinical or mild respiratory infections in pigs, but may lead to more severe disease with other factors. PRCV infection in Denmark was initially detected in 1984, but data are lacking about its current prevalence and diversity. Antibodies against PRCV were detected in about 75 % of recent pig sera from Denmark. In addition, pig nasal swab samples were screened for PRCV and 12 other respiratory pathogens using a high-throughput RT-qPCR system. All targeted pathogens were detected but at different prevalences. Significant associations were found between the presence of PRCV and certain other pathogens. From PRCV positive samples, partial spike gene sequences and complete nucleocapsid coding sequences were determined. In phylogenetic analyses, these PRCVs clustered with earlier European PRCVs and were distinct from transmissible gastroenteritis virus. We conclude that PRCV is widespread within the pig population in Denmark. Further studies on the significance of PRCV are warranted.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Nicole B Goecke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Charlotte K Hjulsager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5 2300 Copenhagen, Denmark
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Kasama Chusang Larsen
- Center for Diagnostics, Department of Health Technology, Technical University of Denmark, Henrik Dams Allé 202 2800 Kgs. Lyngby, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5 2300 Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark.
| |
Collapse
|
5
|
Antas M, Olech M. First report of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in pigs from Poland. BMC Vet Res 2024; 20:517. [PMID: 39551750 PMCID: PMC11571510 DOI: 10.1186/s12917-024-04364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Porcine transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) are swine coronaviruses belonging to the genus Alphacoronavirus in the family Coronaviridae. To date, there are no reports on the prevalence and genetic characterization of these viruses in domestic pigs from Poland. In this study, 828 serum samples were tested by TGEV/PRCV immunoassay to estimate TGEV and PRCV seroprevalence, while 277 nasal swabs and 221 stool samples were tested by real-time PCR to detect viral RNA. Our results revealed that 2.2% (95% CI 1.2, 3.2) of serum samples were positive for anti-TGEV antibodies, while 12.2% (95% CI 9.8, 14.4) of samples were positive for anti-PRCV antibodies. 2.5% (95% CI 1.5, 2.6) and 5.2% (95% CI 3.7, 6.7) of serum samples were inconclusive for TGEV and PRCV, respectively. RNA of TGEV was not detected in any of the tested samples, while PRCV RNA was detected in 6.22% of samples. Genetic and phylogenetic analysis revealed that all Polish PRCV strains were closely related to European and Korean PRCV strains than to American strains. Some of the Polish PRCV strains have a 672 nt deletion at the same position at the 5' end of the S gene as other European and Korean PRCV strains, suggesting that they originated from the same precursor. Other Polish PRCV strains had a 690 nt deletion that differed in size and location from any of the known PRCV strains. This may suggest that these Polish PRCVs may have originated from different ancestor. Furthermore, the Polish PRCV strains showed some unique changes in their sequences, which may reflect their evolution. This study is the first report on the prevalence of TGEV/PRCV in pigs from Poland. In addition, this is the first report on the genetic characterization of Polish PRCV strains, which provide new information on PRCV heterogeneity.
Collapse
Affiliation(s)
- Marta Antas
- National Veterinary Research Institute, Al. Partyzantów 57, Puławy, 24-100, Poland
| | - Monika Olech
- National Veterinary Research Institute, Al. Partyzantów 57, Puławy, 24-100, Poland.
| |
Collapse
|
6
|
Moon SH, Park GN, Choe S, Song S, Le VP, Cho YS, An DJ. Molecular and phylogenetic analysis of transmissible gastroenteritis virus strain VET-16, isolated from piglets in Vietnam. Arch Virol 2024; 169:183. [PMID: 39164596 DOI: 10.1007/s00705-024-06101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/17/2024] [Indexed: 08/22/2024]
Abstract
Porcine transmissible gastroenteritis virus (TGEV) is a major pathogen that causes viral enteritis and severe diarrhea in newborn piglets. TGEV strains have been isolated in the USA, Europe, and China, and their molecular characteristics are well known. However, there have been few reports of molecular analysis of TGEV strains isolated in Southeast Asia. In 2016, we isolated TGEV strain VET-16 from fecal samples collected from piglets in Vietnam and determined its complete genome sequence by Sanger sequencing. We found that, while the full genome of the VET-16 strain was 92.4-99.9% identical to those of other TGEV strains, the ORF3 gene showed very little sequence similarity. Phylogenetic analysis suggested that the VET-16 strain belongs to the Purdue subgroup. Comparison of the predicted amino acid (aa) sequence of the spike protein of strain VET-16 with those of other TGEV strains revealed three aa substitutions (V378L, S379T, and D380N) and a 3-aa insertion (F383_F387insWEK) in antigenic site D of the VET-16 strain. Also, a single aa deletion (∆F1413) was found in the transmembrane domain of the spike gene of VET-16. Like the ORF3 gene from the TGEV Miller M60 vaccine strain, the VET-16 strain has a large deletion (∆725 nt) in the ORF3 gene. Previous studies have suggested that these mutations in the spike and ORF3 genes might be associated with a reduction in pathogenicity. The data from this study will facilitate further genetic analysis and research into the evolution of TGEV in pigs in Vietnam.
Collapse
Affiliation(s)
- Soo Hyun Moon
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Gyu-Nam Park
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - SeEun Choe
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Sok Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Yun Sang Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Dong-Jun An
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea.
| |
Collapse
|
7
|
Bedsted AE, Rasmussen TB, Martinenghi LD, Bøtner A, Nauwynck H, Belsham GJ. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024; 595:110072. [PMID: 38599031 DOI: 10.1016/j.virol.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Laura D Martinenghi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Li S, Lu Y, Yang S, Wang C, Yang J, Huang X, Chen G, Shao Y, Li M, Yu H, Fu Y, Liu G. Porcine lung tissue slices: a culture model for PRCV infection and innate immune response investigations. AMB Express 2024; 14:57. [PMID: 38753111 PMCID: PMC11098997 DOI: 10.1186/s13568-024-01717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Respiratory coronaviruses (RCoVs) significantly threaten human health, necessitating the development of an ex vivo respiratory culture system for investigating RCoVs infection. Here, we successfully generated a porcine precision-cut lung slices (PCLSs) culture system, containing all resident lung cell types in their natural arrangement. Next, this culture system was inoculated with a porcine respiratory coronavirus (PRCV), exhibiting clinical features akin to humans who were infected by SARS-CoV-2. The results demonstrated that PRCV efficiently infected and replicated within PCLSs, targeting ciliated cells in the bronchioles, terminal bronchioles, respiratory bronchioles, and pulmonary alveoli. Additionally, through RNA-Seq analysis of the innate immune response in PCLSs following PRCV infection, expression levels of interferons, inflammatory cytokines and IFN stimulated genes were significantly upregulated. This ex vivo model may not only offer new insights into PRCV infection in the porcine respiratory tract but also serve as a valuable tool for studying human respiratory CoVs infection.
Collapse
Affiliation(s)
- Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Caiying Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Xin Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Guohui Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yongheng Shao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Maolin Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Haoyuan Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
9
|
Liu C, Huang W, He X, Feng Z, Chen Q. Research Advances on Swine Acute Diarrhea Syndrome Coronavirus. Animals (Basel) 2024; 14:448. [PMID: 38338091 PMCID: PMC10854734 DOI: 10.3390/ani14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a virulent pathogen that causes acute diarrhea in piglets. The virus was first discovered in Guangdong Province, China, in 2017 and has since emerged in Jiangxi, Fujian, and Guangxi Provinces. The outbreak exhibited a localized and sporadic pattern, with no discernable temporal continuity. The virus can infect human progenitor cells and demonstrates considerable potential for cross-species transmission, representing a potential risk for zoonotic transmission. Therefore, continuous surveillance of and comprehensive research on SADS-CoV are imperative. This review provides an overview of the temporal and evolutionary features of SADS-CoV outbreaks, focusing on the structural characteristics of the virus, which serve as the basis for discussing its potential for interspecies transmission. Additionally, the review summarizes virus-host interactions, including the effects on host cells, as well as apoptotic and autophagic behaviors, and discusses prevention and treatment modalities for this viral infection.
Collapse
Affiliation(s)
- Chuancheng Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Weili Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Xinyan He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
10
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
11
|
Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun 2023; 14:7745. [PMID: 38008801 PMCID: PMC10679120 DOI: 10.1038/s41467-023-43339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Koen Chiers
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| |
Collapse
|
12
|
Hu Z, Tian X, Lai R, Ji C, Li X. Airborne transmission of common swine viruses. Porcine Health Manag 2023; 9:50. [PMID: 37908005 PMCID: PMC10619269 DOI: 10.1186/s40813-023-00346-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
The transmission of viral aerosols poses a vulnerable aspect in the biosecurity measures aimed at preventing and controlling swine virus in pig production. Consequently, comprehending and mitigating the spread of aerosols holds paramount significance for the overall well-being of pig populations. This paper offers a comprehensive review of transmission characteristics, influential factors and preventive strategies of common swine viral aerosols. Firstly, certain viruses such as foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome virus (PRRSV), influenza A viruses (IAV), porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV) have the potential to be transmitted over long distances (exceeding 150 m) through aerosols, thereby posing a substantial risk primarily to inter-farm transmission. Additionally, other viruses like classical swine fever virus (CSFV) and African swine fever virus (ASFV) can be transmitted over short distances (ranging from 0 to 150 m) through aerosols, posing a threat primarily to intra-farm transmission. Secondly, various significant factors, including aerosol particle sizes, viral strains, the host sensitivity to viruses, weather conditions, geographical conditions, as well as environmental conditions, exert a considerable influence on the transmission of viral aerosols. Researches on these factors serve as a foundation for the development of strategies to combat viral aerosol transmission in pig farms. Finally, we propose several preventive and control strategies that can be implemented in pig farms, primarily encompassing the implementation of early warning models, viral aerosol detection, and air pretreatment. This comprehensive review aims to provide a valuable reference for the formulation of efficient measures targeted at mitigating the transmission of viral aerosols among swine populations.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Chongxing Ji
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China.
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China.
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China.
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China.
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China.
| |
Collapse
|
13
|
Rawal G, Yim-im W, Aljets E, Halbur PG, Zhang J, Opriessnig T. Porcine Respiratory Coronavirus (PRCV): Isolation and Characterization of a Variant PRCV from USA Pigs. Pathogens 2023; 12:1097. [PMID: 37764905 PMCID: PMC10536027 DOI: 10.3390/pathogens12091097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine respiratory coronavirus (PRCV), a mutant of the transmissible gastroenteritis virus (TGEV), was first reported in Belgium in 1984. PRCV typically replicates and induces mild lesions in the respiratory tract, distinct from the enteric tropism of TGEV. In the past 30 years, PRCV has rarely been studied, and most cited information is on traditional isolates obtained during the 1980s and 1990s. Little is known about the genetic makeup and pathogenicity of recent PRCV isolates. The objective of this study was to obtain a contemporary PRCV isolate from US pigs for genetic characterization. In total, 1245 lung homogenate samples from pigs in various US states were tested via real-time PCR targeting PRCV and TGEV RNA. Overall, PRCV RNA was detected in five samples, and a single isolate (ISU20-92330) was successfully cultured and sequenced for its full-length genome. The isolate clustered with a new group of variant TGEVs and differed in various genomic regions compared to traditional PRCV isolates. Pathogens, such as PRCV, commonly circulate in pig herds without causing major disease. There may be value in tracking genomic changes and regularly updating the diagnostic methods for such viruses to be better prepared for the emergence of variants in ecology and pathogenicity.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Wannarat Yim-im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Ethan Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik EH26 0PZ, UK
| |
Collapse
|
14
|
Rawal G, Zhang J, Halbur PG, Gauger PC, Wang C, Opriessnig T. Experimental Infection of Pigs with a Traditional or a Variant Porcine Respiratory Coronavirus (PRCV) Strain and Impact on Subsequent Influenza A Infection. Pathogens 2023; 12:1031. [PMID: 37623991 PMCID: PMC10459072 DOI: 10.3390/pathogens12081031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine respiratory coronavirus (PRCV) pathogenicity in pigs has been characterized using traditional PRCV isolates; however, information is lacking on pathogenicity of currently circulating PRCV isolates. Recently, a contemporary US PRCV variant was isolated. The infection dynamics of that strain (PRCV-var) and a traditional PRCV strain (PRCV-trad) were compared. In brief, 4-week-old pigs were divided into three groups with five pigs each. The pigs were inoculated with PRCV-trad or PRCV-var, or left uninfected. Nasal swabs were collected daily, and all pigs were necropsied at day (D) 3. PRCV nasal shedding was significantly higher in PRCV-var pigs compared to PRCV-trad pigs. To investigate the impact of trad and var PRCVs on subsequent infection with influenza A virus (IAV), four additional groups of five pigs were used: PRCV-trad-IAV (PRCV-trad at D0, co-infected with IAV at D5), PRCV-var-IAV, and IAV positive and negative controls. Significantly higher mean PRCV antibody titers and a significantly higher area under the curve (AUC) for PRCV shedding were observed in PRCV-var compared to PRCV-trad-pigs at D10. There was no impact on IAV infection. In conclusion, a 2020 PRCV variant isolate was similar in pathogenicity but more transmissible compared to a traditional 1989 isolate. These findings raise concerns about virus evolution towards more highly pathogenic and transmissible strains and the need to monitor such viruses.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
15
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Sahun M, Privat-Maldonado A, Lin A, De Roeck N, Van der Heyden L, Hillen M, Michiels J, Steenackers G, Smits E, Ariën KK, Jorens PG, Delputte P, Bogaerts A. Inactivation of SARS-CoV-2 and Other Enveloped and Non-Enveloped Viruses with Non-Thermal Plasma for Hospital Disinfection. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:5206-5215. [PMID: 37034498 PMCID: PMC10068876 DOI: 10.1021/acssuschemeng.2c07622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.
Collapse
Affiliation(s)
- Maxime Sahun
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Angela Privat-Maldonado
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Naomi De Roeck
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Lisa Van der Heyden
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Michaël Hillen
- Industrial
Vision Lab (InViLab), Department of Electromechanical Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Johan Michiels
- Virology
Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Gunther Steenackers
- Industrial
Vision Lab (InViLab), Department of Electromechanical Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Evelien Smits
- Center
for Oncological Research (CORE), Integrated Personalized & Precision
Oncology Network (IPPON), University of
Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Kevin K. Ariën
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
- Virology
Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Philippe G. Jorens
- Department
of Intensive Care Medicine, Antwerp University
Hospital, Wilrijkstraat
10, 2650 Antwerp, Belgium
- Laboratory
of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University
of Antwerp, Universiteitsplein
1, 2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Plasma
Lab for Applications in Sustainability and Medicine—Antwerp
(PLASMANT), Department of Chemistry, University
of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
17
|
Xu L, Dai HB, Luo ZP, Zhu L, Zhao J, Lee FQ, Liu ZY, Nie MC, Wang XT, Zhou YC, Xu ZW. Characterization and Evaluation of the Pathogenicity of a Natural Gene-Deleted Transmissible Gastroenteritis Virus in China. Transbound Emerg Dis 2023; 2023:2652850. [PMID: 40303681 PMCID: PMC12017154 DOI: 10.1155/2023/2652850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/02/2025]
Abstract
Porcine transmissible gastroenteritis virus is the major pathogen that causes fatal diarrhea in newborn piglets. In this study, a TGEV strain was isolated from the small intestine of diarrhea piglets in Sichuan Province, China, and designated SC2021. The complete genomic sequence of TGEV SC2021 was 28561 bp, revealing a new natural deletion TGEV strain. Based on phylogenetic analyses, TGEV SC2021 belonged to the Miller cluster and was closely related to CN strains. The newborn piglets orally challenged with TGEV SC2021 showed typical watery diarrhea. In addition, macro and micropathological changes in the lungs and intestines were observed. In conclusion, we isolated a new natural deletion virus strain and confirmed that the virus strain has high pathogenicity in newborn piglets. Moreover, macroscopic and microscopic lesions were observed in the lungs and intestines of all TGEV SC2021-infected piglets. In summary, we isolated a new natural deletion TGEV strain and demonstrated that the natural deletion strain showed high pathogenicity in newborn piglets. These data enrich the diversity of TGEV strains and help us to understand the genetic evolution and molecular pathogenesis of TGEV.
Collapse
Affiliation(s)
- Lei Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hong-bo Dai
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering Co. Ltd., Chengdu 610066, China
| | - Zhi-peng Luo
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feng-qin Lee
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ze-yan Liu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Min-cai Nie
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue-tao Wang
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering Co. Ltd., Chengdu 610066, China
| | - Yuan-cheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhi-wen Xu
- College of Veterinary Medicine, Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Long-Term Expanding Porcine Airway Organoids Provide Insights into the Pathogenesis and Innate Immunity of Porcine Respiratory Coronavirus Infection. J Virol 2022; 96:e0073822. [PMID: 35762755 PMCID: PMC9327677 DOI: 10.1128/jvi.00738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Respiratory coronaviruses cause serious health threats to humans and animals. Porcine respiratory coronavirus (PRCoV), a natural transmissible gastroenteritis virus (TGEV) mutant with partial spike deletion, causes mild respiratory disease and is an interesting animal respiratory coronavirus model for human respiratory coronaviruses. However, the absence of robust ex vivo models of porcine airway epithelium hinders an understanding of the pathogenesis of PRCoV infection. Here, we generated long-term porcine airway organoids (AOs) derived from basal epithelial cells, which recapitulate the in vivo airway complicated epithelial cellularity. Both 3D and 2D AOs are permissive for PRCoV infection. Unlike TGEV, which established successful infection in both AOs and intestinal organoids, PRCoV was strongly amplified only in AOs, not intestinal organoids. Furthermore, PRCoV infection in AOs mounted vigorous early type I and III interferon (IFN) responses and upregulated the expression of overzealous inflammatory genes, including pattern recognition receptors (PRRs) and proinflammatory cytokines. Collectively, these data demonstrate that stem-derived porcine AOs can serve as a promising disease model for PRCoV infection and provide a valuable tool to study porcine respiratory infection. IMPORTANCE Porcine respiratory CoV (PRCoV), a natural mutant of TGEV, shows striking pathogenetic similarities to human respiratory CoV infection and provides an interesting animal model for human respiratory CoVs, including SARS-CoV-2. The lack of an in vitro model recapitulating the complicated cellularity and structure of the porcine respiratory tract is a major roadblock for the study of PRCoV infection. Here, we developed long-term 3D airway organoids (AOs) and further established 2D AO monolayer cultures. The resultant 3D and 2D AOs are permissive for PRCoV infection. Notably, PRCoV mediated pronounced IFN and inflammatory responses in AOs, which recapitulated the inflammatory responses associated with PRCoV in vivo infection. Therefore, porcine AOs can be utilized to characterize the pathogenesis of PRCoV and, more broadly, can serve as a universal platform for porcine respiratory infection.
Collapse
|