1
|
Wu W, Gong M, Liu P, Yu H, Gao X, Zhao X. Hypomagnesemia: exploring its multifaceted health impacts and associations with blood pressure regulation and metabolic syndrome. Diabetol Metab Syndr 2025; 17:217. [PMID: 40524199 PMCID: PMC12168336 DOI: 10.1186/s13098-025-01772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 05/30/2025] [Indexed: 06/19/2025] Open
Abstract
This article provides a comprehensive and in-depth exploration of the multifaceted effects of Hypomagnesemia on human health, with a specific focus on its intricate associations with mechanisms regulating blood pressure and metabolic syndrome. Firstly, the fundamental concept of hypomagnesemia is elucidated, followed by a detailed analysis of its prevalence, risk factors, and Magnesium Deficiency Score. Furthermore, this article delves into the intricate relationship between hypomagnesemia and blood pressure regulation, encompassing its impact on endothelial function, vascular calcification, oxidative stress and inflammatory response, sympathetic nervous system activity as well as the renin-angiotensin-aldosterone system (RAAS). Additionally, it explores the correlation between hypomagnesemia and insulin resistance, metabolic syndrome along with other health issues. Notably noteworthy is that this paper also places special emphasis on exploring the potential role of hypomagnesemia in specific diseases such as renal hypertension and preeclampsia while providing novel insights for their prevention and treatment. Finally, this article summarizes the diverse effects of hypomagnesemia on health while anticipating future research directions. Future studies should further investigate the pathogenesis underlying hypomagnesemia while optimizing assessment methods for magnesium deficiency to develop targeted intervention strategies aimed at offering improved treatment options alongside preventive measures for patients.
Collapse
Affiliation(s)
- Wenlong Wu
- Department of Cardiology, the Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Shaku District, Dalian, 116023, China
- Department of Cardiology, Liao Ning University of Traditional Chinese Medicine, No.79, Chong Shan East Road, Huanggu District, Shenyang, 110085, China
| | - Ming Gong
- Department of Cardiology, the Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Shaku District, Dalian, 116023, China
| | - Pan Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shen He District, Shenyang, 110016, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shen He District, Shenyang, 110016, China
| | - Xue Gao
- Department of Cardiology, the Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Shaku District, Dalian, 116023, China
- Department of Cardiology, Liao Ning University of Traditional Chinese Medicine, No.79, Chong Shan East Road, Huanggu District, Shenyang, 110085, China
| | - Xin Zhao
- Department of Cardiology, the Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Shaku District, Dalian, 116023, China.
| |
Collapse
|
2
|
El-Dessouki AM, Alzokaky AA, Raslan NA, Ibrahim S, Selim HMRM, Al-Karmalawy AA. Dabigatran attenuates methotrexate-induced hepatotoxicity by regulating coagulation, endothelial dysfunction, and the NF-kB/IL-1β/MCP-1 and TLR4/NLRP3 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5129-5145. [PMID: 39527308 DOI: 10.1007/s00210-024-03567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study examines Dabigatran's (Dab) capacity to mitigate methotrexate (MTX)-induced coagulation disorders and endothelial dysfunction, while exploring its effects on oxidative stress and inflammatory pathways (NF-kB/IL-1β/MCP-1, TLR4/NLRP3) in reducing hepatotoxicity. Rats were assigned to four groups: a control group receiving saline intraperitoneally (i.p.); an MTX group with a single MTX dose (20 mg/kg, i.p.) to induce hepatotoxicity; and two pretreatment groups receiving Dab orally at 15 mg/kg and 25 mg/kg for seven days before and 4 days after MTX administration. MTX-treated rats showed significant increases in liver enzymes (ALT, AST, ALP) and reductions in antioxidant enzymes (SOD, GSH), along with elevated coagulation parameters (tissue factor (TF), thrombin, fibrin, plasminogen activator inhibitor-1 (PAI-1)), leading to coagulation disorders. Endothelial dysfunction was evident with reduced eNOS expression, while inflammation increased through elevated iNOS, ICAM-1, and pro-inflammatory cytokines (MPO, NF-kB, TNF-α, IL-1β, MCP-1), alongside activation of the TLR4/NLRP3 inflammasome pathway and decreased IL-10 (p < 0.05). Immunohistochemistry revealed increased cytochrome c and caspase-3 expression, with histopathological damage. Dabigatran mitigated these effects, downregulating liver enzymes, modulating coagulation factors, restoring eNOS levels, and reducing histopathological and inflammatory markers. Dabigatran demonstrates significant therapeutic potential in alleviating methotrexate-induced hepatotoxicity through its antioxidant, anti-inflammatory, anticoagulant, and anti-apoptotic effects. Its regulation of coagulation parameters and endothelial function suggests a protective role against tissue damage, warranting further investigation.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th of October City, 12566, Giza, Egypt.
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Nahed A Raslan
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
- Clinical Pharmacy Department, College of Health Sciences and Nursing, Al-Rayan Colleges, AL-Madinah AL-Munawarah, Saudi Arabia
| | - Samar Ibrahim
- Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Galala University-Ataka, Suez, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 11597, Riyadh, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| |
Collapse
|
3
|
Xia S, Hu ZY, Cao R, Guo L, Ma JT, Xiao MX, Liu J, Zhai BW, Fu R, Jiang ZC, Gong H, Yan M. Magnesium isoglycyrrhizinate prevented the liver injury of acetaminophen by promoting mitochondrial biogenesis. Toxicol Res (Camb) 2025; 14:tfaf024. [PMID: 40151340 PMCID: PMC11942792 DOI: 10.1093/toxres/tfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Acetaminophen (N-acetyl-para-aminophenol, APAP) is the most widely used antipyretic and anti-inflammatory drug in the world. It is reported that APAP-induced liver damage accounts for about half of all liver failure patients in Europe and the United States. Magnesium isoglycyrrhizinate (MI) is the fourth-generation glycyrrhizic acid preparation developed in China. It has anti-inflammatory, hepatocyte membrane protection, and liver function recovery effects. This study aimed to investigate the effect of MI on alleviating APAP-induced liver injury and explore potential mechanisms. C57 BL/6 J mice were used to assess the efficacy of liver protection, by detecting ALT, AST, H&E and TUNEL staining. Liver samples from saline, APAP, APAP combined with MI group were selected for the transcriptomics analysis. MI significantly prevented the elevation of ALT, and AST. Hepatocyte necrosis was alleviated when MI was co-treated with APAP in TUNEL assay. There were no differences in total GSH levels or GSH/GSSG ration between APAP and MI group. Western Blot MI showed MI didn't affect the protein levels of CYP2E1 expression, mitochondrial p-JNK and cytosolic Endo G. GO analysis showed that mitochondria were the main target of MI in reducing APAP-induced liver injury. MI also significantly upregulated the expression of TFAM, NRF-1, PGC-1β and Sirt1. MI restored mRNA levels of oxidative phosphorylation genes and recovered mitochondrial membrane potential that fell after APAP administration. In conclusion, MI alleviated APAP-induced liver injury by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Zhi-yu Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Rong Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Hunan University of Chinese Medicine, No. 300 Xueshi Road, Hanpu Science and Education Park, Changsha 410208, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Jia-ting Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Ming-xuan Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Jiayi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Bo-wen Zhai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Rao Fu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Zhi-chao Jiang
- Hunan University of Chinese Medicine, No. 300 Xueshi Road, Hanpu Science and Education Park, Changsha 410208, China
- The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, No. 427, Section 3, Furong Middle Road, Changsha 410007, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, 139# Renmin Middle Road, Furong District, Changsha 410011, China
- Toxicology Counseling Center of Hunan Province, 139# Renmin Middle Road, Furong District, Changsha 410011, China
| |
Collapse
|
4
|
Ali AQ, Sabir DK, Dawood AF, Abu-Rashed M, Hasari A, Gharqan F, Alnefaie S, Mohiddin LE, Tatry MM, Albadan DA, Alyami MM, Almutairi MF, Shawky LM. The potential liver injury induced by metronidazole-provoked disturbance of gut microbiota: modulatory effect of turmeric supplementation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9845-9858. [PMID: 38922353 DOI: 10.1007/s00210-024-03242-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
It has been reported that the gut-liver axis and intestinal microbiome contribute crucially to different liver diseases. So, targeting this hepato-intestinal connection may provide a novel treatment modality for hepatic disorders such as drug-induced liver injury (DILI). The present study thought to investigate the protective effect of turmeric (TUR) on metronidazole (MNZ)-induced liver damage and the possible association of the gut-liver axis and gut microbiota as a suggested underlying mechanism. In the first experiment, a MNZ-induced liver injury rat model was reproduced after 130 mg/kg oral MNZ administration for 30 days. Meanwhile, the treatment group was orally treated with 100 mg/kg turmeric daily. In the second experiment, fecal microbiome transplantation (FMT) was conducted, in which the fecal microbiome of each group in the first experiment was transplanted to a healthy corresponding group in the second experiment. The liver enzymes (aminotransferase (ALT) and aspartate aminotransferase (AST)) and histopathological examination were estimated to assess liver function. Inflammatory cytokines and oxidative markers were evaluated in the liver tissues. Histological analysis, intestinal barrier markers, and expression of tight junction proteins were measured for assessment of the intestinal injury. Changes in the gut microbial community and possible hepatic bacterial transmission were analyzed using 16S rRNA sequencing. MNZ induced intestinal and liver injuries which were significantly improved by turmeric. Increased firmicutes/bacteroidetes ratio and bacterial transmission due to gut barrier disruption were suggested. Moreover, TUR has maintained the gut microbial community by rebalancing and restoring bacterial proportions and abundance, thereby repairing the gut mucosal barrier and suppressing bacterial translocation. TUR protected against MNZ-induced gut barrier disruption. Reshaping of the intestinal bacterial composition and prohibition of the hepatic microbial translocation were suggested turmeric effects, potentially mitigating MNZ-related liver toxicity.
Collapse
Affiliation(s)
- Abdulaziz Qaid Ali
- Vision Colleges, Riyadh, Saudi Arabia.
- Faculty of Medicine, University of Sciences and Technology, Sana'a, Yemen.
| | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | - Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Jarmakiewicz-Czaja S, Ferenc K, Sokal-Dembowska A, Filip R. Nutritional Support: The Use of Antioxidants in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:4390. [PMID: 38673974 PMCID: PMC11050446 DOI: 10.3390/ijms25084390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The problem of treating inflammatory bowel disease continues to be a topic of great interest for researchers. Despite the complexity surrounding their treatment and strategies to prolong periods of remission, there is a promising exploration of various compounds that have potential in combating inflammation and alleviating symptoms. Selenium, calcium, magnesium, zinc, and iron are among these compounds, offering a glimpse of hope in the treatment of IBD. These essential minerals not only hold the promise of reducing inflammation in these diseases, but also show the potential to enhance immune function and possibly influence the balance of intestinal microflora. By potentially modulating the gut microbiota, they may help support overall immune health. Furthermore, these compounds could play a crucial role in mitigating inflammation and minimising complications in patients with IBD. Furthermore, the protective effect of these compounds against mucosal damage in IBD and the protective effect of calcium itself against osteoporosis in this group of patients are notable.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
6
|
Jin L, Shi L, Huang W. The role of bile acids in human aging. MEDICAL REVIEW (2021) 2024; 4:154-157. [PMID: 38680685 PMCID: PMC11046569 DOI: 10.1515/mr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
Bile acids are recognized as important signaling molecules that enable fine-tuned inter-communication from the liver, through the intestine, to virtually any organ, thus encouraging their pleiotropic physiological effects. Aging is a complex natural process defined as a progressive decline in cellular and organismal functions. A causal link between bile acids and the aging process is emerging. However, there are gaps in our understanding of the molecular mechanisms and precise targets responsible for the alteration of bile acid profiles and their role in the aging process. Intestinal barrier dysfunction leads to endotoxemia, systemic inflammation, insulin resistance, diabetes, lipid accumulation, obesity and fatty liver diseases, and health decline and death. In fact, intestinal barrier dysfunction is suggested to be an evolutionarily conserved hallmark of aging. Bile acids may modulate the aging process by regulating intestinal barrier integrity.
Collapse
Affiliation(s)
- Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
| | - Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
- Irell & Manella Graduate School of Biomedical Science, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
7
|
Mou Y, Liao W, Li Y, Wan L, Liu J, Luo X, Shen H, Sun Q, Wang J, Tang J, Wang Z. Glycyrrhizin and the Related Preparations: An Inspiring Resource for the Treatment of Liver Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:315-354. [PMID: 38553799 DOI: 10.1142/s0192415x24500149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Liver diseases and their related complications endanger the health of millions of people worldwide. The prevention and treatment of liver diseases are still serious challenges both in China and globally. With the improvement of living standards, the prevalence of metabolic liver diseases, including non-alcoholic fatty liver disease and alcoholic liver disease, has increased at an alarming rate, resulting in more cases of end-stage liver disease. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently needed. Glycyrrhizin (GL), a triterpene glycoside from the roots of licorice plants, possesses a wide range of pharmacological and biological activities. Currently, GL preparations (GLPs) have certain advantages in the treatment of liver diseases, with good clinical effects and fewer adverse reactions, and have shown broad application prospects through multitargeting therapeutic mechanisms, including antisteatotic, anti-oxidative stress, anti-inflammatory, immunoregulatory, antifibrotic, anticancer, and drug interaction activities. This review summarizes the currently known biological activities of GLPs and their medical applications in the treatment of liver diseases, and highlights the potential of these preparations as promising therapeutic options and their alluring prospects for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Xialing Luo
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing 402760, P. R. China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
8
|
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the Hallmarks of Aging. Nutrients 2024; 16:496. [PMID: 38398820 PMCID: PMC10892939 DOI: 10.3390/nu16040496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium is an essential ion in the human body that regulates numerous physiological and pathological processes. Magnesium deficiency is very common in old age. Age-related chronic diseases and the aging process itself are frequently associated with low-grade chronic inflammation, called 'inflammaging'. Because chronic magnesium insufficiency has been linked to excessive generation of inflammatory markers and free radicals, inducing a chronic inflammatory state, we formerly hypothesized that magnesium inadequacy may be considered among the intermediaries helping us explain the link between inflammaging and aging-associated diseases. We show in this review evidence of the relationship of magnesium with all the hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled autophagy, dysbiosis, and chronic inflammation), which may positively affect the human healthspan. It is feasible to hypothesize that maintaining an optimal balance of magnesium during one's life course may turn out to be a safe and economical strategy contributing to the promotion of healthy aging. Future well-designed studies are necessary to further explore this hypothesis.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- School of Medicine, “Kore” University of Enna, 94100 Enna, Italy;
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
9
|
Tao W, Fan Q, Wei J. Gut-Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury. Curr Issues Mol Biol 2024; 46:1219-1236. [PMID: 38392196 PMCID: PMC10887627 DOI: 10.3390/cimb46020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Drug-induced liver injury (DILI) is a liver disease that remains difficult to predict and diagnose, and the underlying mechanisms are yet to be fully clarified. The gut-liver axis refers to the reciprocal interactions between the gut and the liver, and its homeostasis plays a prominent role in maintaining liver health. It has been recently reported that patients and animals with DILI have a disrupted gut-liver axis, involving altered gut microbiota composition, increased intestinal permeability and lipopolysaccharide translocation, decreased short-chain fatty acids production, and impaired bile acid metabolism homeostasis. The present review will summarize the evidence from both clinical and preclinical studies about the role of the gut-liver axis in the pathogenesis of DILI. Moreover, we will focus attention on the potential therapeutic strategies for DILI based on improving gut-liver axis function, including herbs and phytochemicals, probiotics, fecal microbial transplantation, postbiotics, bile acids, and Farnesoid X receptor agonists.
Collapse
Affiliation(s)
- Wenjing Tao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
10
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
11
|
Jotshi A, Sukla KK, Haque MM, Bose C, Varma B, Koppiker CB, Joshi S, Mishra R. Exploring the human microbiome - A step forward for precision medicine in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1877. [PMID: 37539732 PMCID: PMC10644338 DOI: 10.1002/cnr2.1877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The second most frequent cancer in the world and the most common malignancy in women is breast cancer. Breast cancer is a significant health concern in India with a high mortality-to-incidence ratio and presentation at a younger age. RECENT FINDINGS Recent studies have identified gut microbiota as a significant factor that can have an influence on the development, treatment, and prognosis of breast cancer. This review article aims to describe the influence of microbial dysbiosis on breast cancer occurrence and the possible interactions between oncobiome and specific breast cancer molecular subtypes. The review further also discusses the role of epigenetics and diet/nutrition in the regulation of the gut and breast microbiome and its association with breast cancer prevention, therapy, and recurrence. Additionally, the recent technological advances in microbiome research, including next-generation sequencing (NGS) technologies, genome sequencing, single-cell sequencing, and microbial metabolomics along with recent advances in artificial intelligence (AI) have also been reviewed. This is an attempt to present a comprehensive status of the microbiome as a key cancer biomarker. CONCLUSION We believe that correlating microbiome and carcinogenesis is important as it can provide insights into the mechanisms by which microbial dysbiosis can influence cancer development and progression, leading to the potential use of the microbiome as a tool for prognostication and personalized therapy.
Collapse
Affiliation(s)
- Asmita Jotshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | | | | | - Chandrani Bose
- Life Sciences R&D, TCS Research, Tata Consultancy Services LimitedPuneIndia
| | - Binuja Varma
- TCS Genomics Lab, Tata Consultancy Services LimitedNew DelhiIndia
| | - C. B. Koppiker
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
- Prashanti Cancer Care Mission, Pune, India and Orchids Breast Health Centre, a PCCM initiativePuneIndia
| | - Sneha Joshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | - Rupa Mishra
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| |
Collapse
|
12
|
Zhu R, Gao Y, Dong J, Li Z, Ren Z. The changes of gut microbiota and metabolites in different drug-induced liver injuries. J Med Microbiol 2023; 72. [PMID: 38015063 DOI: 10.1099/jmm.0.001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The increasing incidence of drug-induced liver injury (DILI) has become a major concern. Gut microbiota, as another organ of the human body, has been studied in various tumors, cardiovascular metabolic diseases, inflammatory bowel disease and human immunity. The studies mentioned above have confirmed its important impact on the occurrence and development of DILI. The gut-liver axis explains the close relationship between the gut and the liver, and it may be a pathway by which gut microbes contribute to DILI. In addition, the interaction between drugs and gut microbes affects both separately, which in turn may have positive or negative effects on the body, including DILI. There are both common and specific changes in liver injury caused by different drugs. The alteration of metabolites in DILI is also a new direction of therapeutic exploration. The application of microbiomics, metabolomics and other multi-omics to DILI has also explored new ideas for DILI. In this review, we conclude the alterations of gut microbes and metabolites under different DILI, and the significance of applying gut microbiome-metabolomics to DILI, so as to explore the metabolic characteristics of DILI and possible novel metabolic biomarkers.
Collapse
Affiliation(s)
- Ruirui Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yinghui Gao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jianxia Dong
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhiqin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
13
|
Treatment of Drug-Induced Liver Injury. Biomedicines 2022; 11:biomedicines11010015. [PMID: 36672522 PMCID: PMC9855719 DOI: 10.3390/biomedicines11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Current pharmacotherapy options of drug-induced liver injury (DILI) remain under discussion and are now evaluated in this analysis. Needless to say, the use of the offending drug must be stopped as soon as DILI is suspected. Normal dosed drugs may cause idiosyncratic DILI, and drugs taken in overdose commonly lead to intrinsic DILI. Empirically used but not substantiated regarding efficiency by randomized controlled trials (RCTs) is the intravenous antidote treatment with N-acetylcysteine (NAC) in patients with intrinsic DILI by N-acetyl-p-aminophenol (APAP) overdose. Good data recommending pharmacotherapy in idiosyncratic DILI caused by hundreds of different drugs are lacking. Indeed, a recent analysis revealed that just eight RCTs have been published, and in only two out of eight trials were DILI cases evaluated for causality by the worldwide used Roussel Uclaf Causality Assessment Method (RUCAM), representing overall a significant methodology flaw, as results of DILI RCTs lacking RUCAM are misleading since many DILI cases are known to be attributable erroneously to nondrug alternative causes. In line with these major shortcomings and mostly based on anecdotal reports, glucocorticoids (GCs) and other immuno-suppressants may be given empirically in carefully selected patients with idiosyncratic DILI exhibiting autoimmune features or caused by immune checkpoint inhibitors (ICIs), while some patients with cholestatic DILI may benefit from ursodeoxycholic acid use; in other patients with drug-induced hepatic sinusoidal obstruction syndrome (HSOS) and coagulopathy risks, the indication for anticoagulants should be considered. In view of many other mechanistic factors such as the hepatic microsomal cytochrome P450 with a generation of reactive oxygen species (ROS), ferroptosis with toxicity of intracellular iron, and modification of the gut microbiome, additional therapy options may be available in the future. In summation, stopping the offending drug is still the first line of therapy for most instances of acute DILI, while various therapies are applied empirically and not based on good data from RCTs awaiting further trials using the updated RUCAM that asks for strict exclusion and inclusion details like liver injury criteria and provides valid causality rankings of probable and highly probable grades.
Collapse
|
14
|
Frąk M, Grenda A, Krawczyk P, Milanowski J, Kalinka E. Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:5577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Małgorzata Frąk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Anna Grenda
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Janusz Milanowski
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
15
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|