1
|
Hildebrand JA, Daniels NR, Dehm EM, Fisher BD, Guter JK, Janse CJ, Lucas ED, Sangala JA, Tankersley TN, Hart GT, Hamilton SE. Severe malaria enforces short-lived effector cell differentiation but does not prevent effective secondary responses by memory CD8 T cells. PLoS Pathog 2025; 21:e1012993. [PMID: 40163479 PMCID: PMC11957282 DOI: 10.1371/journal.ppat.1012993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Parasitic infections are a major worldwide health burden, yet most studies of CD8 T cell differentiation focus on acute viral and bacterial infections. To understand effector and memory CD8 T cell responses during erythrocytic malaria infection in mice, we utilized transgenic OT-I T cells and compared CD8 T cell responses between infection with OVA-expressing strains of Listeria monocytogenes (Lm) and Plasmodium berghei ANKA (PbA). We find that CD8 T cells expand vigorously during both infections. However, in contrast to Lm infection, PbA infection induces T cells that are heavily biased toward an IL-7Ra-deficient and KLRG1+ short-lived effector cell (SLEC) phenotype at the expense of memory precursor effector cell (MPECs) formation. PbA-induced inflammation, including IFNγ, is partially responsible for this outcome. Following treatment with antimalarial drugs and T cell contraction, PbA-primed memory T cells are rarely found in the blood and peripheral tissues but do maintain a low presence in the spleen and bone marrow. Despite these poor numbers, PbA memory T cells robustly expand upon vaccination or viral infection, control pathogen burden, and form secondary memory pools. Thus, despite PbA enforced SLEC formation and limited memory, effective secondary responses can still proceed.
Collapse
Affiliation(s)
- Jacob A. Hildebrand
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Noah R. Daniels
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emma M. Dehm
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin D. Fisher
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph K. Guter
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Erin D. Lucas
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jules A. Sangala
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Disease and Internal Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor N. Tankersley
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Geoffrey T. Hart
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Disease and Internal Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sara E. Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Gustifante BN, Khairani S, Fauziah N, Riswari SF, Berbudi A. Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review. Pathogens 2025; 14:71. [PMID: 39861032 PMCID: PMC11768281 DOI: 10.3390/pathogens14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of Plasmodium proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells. Immunotherapy, which enhances the immune response and promotes durable T cell activity, offers a promising avenue for more effective and lasting malaria treatments. This review systematically analyzed 63 studies published in the last decade, focusing on the role of T cells in malaria. Among the studies, 87.2% targeted T cells as immunotherapy candidates, with CD4+ and CD8+ T cells each accounting for 47.6% of the studies. γδ T cells were the focus in 7.9% of cases, while 12.7% explored non-T cell contributions to enhancing T cell-mediated responses. The findings underscore the potential of T cells, particularly CD8+ T cells, in liver-stage defense and advocate for the exploration of advanced vaccine platforms and novel therapies, such as mRNA-based vectors and monoclonal antibodies.
Collapse
Affiliation(s)
- Balsa Nobility Gustifante
- Medical Undergraduate Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Shafia Khairani
- Veterinary Medicine Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia;
- Department of Biomedical Sciences, Cell Biology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nisa Fauziah
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| | - Silvita Fitri Riswari
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| | - Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| |
Collapse
|
3
|
Dookie RS, Villegas-Mendez A, Cheeseman A, Jones AP, Barroso R, Barrett JR, Draper SJ, Janse CJ, Grogan JL, MacDonald AS, Couper KN. Synergistic blockade of TIGIT and PD-L1 increases type-1 inflammation and improves parasite control during murine blood-stage Plasmodium yoelii non-lethal infection. Infect Immun 2024; 92:e0034524. [PMID: 39324794 PMCID: PMC11556036 DOI: 10.1128/iai.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Pro-inflammatory immune responses are rapidly suppressed during blood-stage malaria but the molecular mechanisms driving this regulation are still incompletely understood. In this study, we show that the co-inhibitory receptors TIGIT and PD-1 are upregulated and co-expressed by antigen-specific CD4+ T cells (ovalbumin-specific OT-II cells) during non-lethal Plasmodium yoelii expressing ovalbumin (PyNL-OVA) blood-stage infection. Synergistic blockade of TIGIT and PD-L1, but not individual blockade of each receptor, during the early stages of infection significantly improved parasite control during the peak stages (days 10-15) of infection. Mechanistically, this protection was correlated with significantly increased plasma levels of IFN-γ, TNF, and IL-2, and an increase in the frequencies of IFN-γ-producing antigen-specific T-bet+ CD4+ T cells (OT-II cells), but not antigen-specific CD8+ T cells (OT-I cells), along with expansion of the splenic red pulp and monocyte-derived macrophage populations. Collectively, our study identifies a novel role for TIGIT in combination with the PD1-PD-L1 axis in regulating specific components of the pro-inflammatory immune response and restricting parasite control during the acute stages of blood-stage PyNL infection.
Collapse
Affiliation(s)
- Rebecca S. Dookie
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antonn Cheeseman
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam P. Jones
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ruben Barroso
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Leiden Malaria Group, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jane L. Grogan
- Department of Cancer Immunology, Genentech, South San Francisco, California, USA
| | - Andrew S. MacDonald
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kevin N. Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Mitchell RA, Ubillos I, Requena P, Campo JJ, Ome-Kaius M, Hanieh S, Umbers A, Samol P, Barrios D, Jiménez A, Bardají A, Mueller I, Menéndez C, Rogerson S, Dobaño C, Moncunill G. Chronic malaria exposure is associated with inhibitory markers on T cells that correlate with atypical memory and marginal zone-like B cells. Clin Exp Immunol 2024; 216:172-191. [PMID: 38387476 PMCID: PMC11036110 DOI: 10.1093/cei/uxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024] Open
Abstract
Chronic immune activation from persistent malaria infections can induce immunophenotypic changes associated with T-cell exhaustion. However, associations between T and B cells during chronic exposure remain undefined. We analyzed peripheral blood mononuclear cells from malaria-exposed pregnant women from Papua New Guinea and Spanish malaria-naïve individuals using flow cytometry to profile T-cell exhaustion markers phenotypically. T-cell lineage (CD3, CD4, and CD8), inhibitory (PD1, TIM3, LAG3, CTLA4, and 2B4), and senescence (CD28-) markers were assessed. Dimensionality reduction methods revealed increased PD1, TIM3, and LAG3 expression in malaria-exposed individuals. Manual gating confirmed significantly higher frequencies of PD1+CD4+ and CD4+, CD8+, and double-negative (DN) T cells expressing TIM3 in malaria-exposed individuals. Increased frequencies of T cells co-expressing multiple markers were also found in malaria-exposed individuals. T-cell data were analyzed with B-cell populations from a previous study where we reported an alteration of B-cell subsets, including increased frequencies of atypical memory B cells (aMBC) and reduction in marginal zone (MZ-like) B cells during malaria exposure. Frequencies of aMBC subsets and MZ-like B cells expressing CD95+ had significant positive correlations with CD28+PD1+TIM3+CD4+ and DN T cells and CD28+TIM3+2B4+CD8+ T cells. Frequencies of aMBC, known to associate with malaria anemia, were inversely correlated with hemoglobin levels in malaria-exposed women. Similarly, inverse correlations with hemoglobin levels were found for TIM3+CD8+ and CD28+PD1+TIM3+CD4+ T cells. Our findings provide further insights into the effects of chronic malaria exposure on circulating B- and T-cell populations, which could impact immunity and responses to vaccination.
Collapse
Affiliation(s)
- Robert A Mitchell
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Requena
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Antigen Discovery Inc., Irvine, CA, USA
| | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Sarah Hanieh
- University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra Umbers
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Paula Samol
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Clara Menéndez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
5
|
Brandi J, Wiethe C, Riehn M, Jacobs T. OMIP-93: A 41-color high parameter panel to characterize various co-inhibitory molecules and their ligands in the lymphoid and myeloid compartment in mice. Cytometry A 2023; 103:624-630. [PMID: 37219006 DOI: 10.1002/cyto.a.24740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
This 41-color panel has been designed to characterize both the lymphoid and the myeloid compartments in mice. The number of immune cells isolated from organs is often low, whilst an increasing number of factors need to be analyzed to gain a deeper understanding of the complexity of an immune response. With a focus on T cells, their activation and differentiation status, as well as their expression of several co-inhibitory and effector molecules, this panel also allows the analysis of ligands to these co-inhibitory molecules on antigen-presenting cells. This panel enables deep phenotypic characterization of CD4+ and CD8+ T cells, regulatory T cells, γδ T cells, NK T cells, B cells, NK cells, monocytes, macrophages, dendritic cells, and neutrophils. Whilst previous panels have focused on these topics individually, this is the first panel to enable simultaneous analysis of these compartments, thus enabling a comprehensive analysis with a limited number of immune cells/sample size. This panel is designed to analyze and compare the immune response in different mouse models of infectious diseases, but can also be extended to other disease models, for example tumors or autoimmune diseases. Here, we apply this panel to C57BL/6 mice infected with Plasmodium berghei ANKA, a mouse model of cerebral malaria.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Wiethe
- Marketing and Scientific Application, BioLegend Inc, San Diego, California, USA
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
6
|
Bailly C. Contribution of the TIM-3/Gal-9 immune checkpoint to tropical parasitic diseases. Acta Trop 2023; 238:106792. [PMID: 36509129 DOI: 10.1016/j.actatropica.2022.106792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical parasitic diseases (NTD) are prevalent in many countries and cost-effective treatments remain urgently needed. Novel approaches have been proposed to address these diseases through an action on immune co-inhibitory checkpoints which are exploited by parasites to evade the immune system. Among these checkpoints, TIM-3 has been shown to play a key role in antiparasitic immunity via a repression and functional attenuation of CD4+ and/or CD8+ T-cells. The present review discusses the role of the TIM-3/galectin-9 checkpoint in seven major NTD: Chagas disease, leishmaniasis and malaria (3 trypanosomatid infections), schistosomiasis, toxoplasmosis, echinococcosis and filariasis (4 helminth infections). In each case, the role of the checkpoint has been analyzed and the use of anti-TIM-3 antibodies evaluated as a potential therapeutic approach. In general, the parasitic infection is coupled with an upregulation of TIM-3 expressed on T cells, but not necessarily with an exhaustion of those T cells. In several cases, the use of anti-TIM-3 antibodies represent a possible strategy to reinforce the clearance and to reduce the parasite load. Promising data have been reported in cases of leishmaniasis, malaria and schistosomiasis, whereas a similar approach proved much less efficient (if not deleterious) in cases of echinococcosis and the Chagas disease. Nevertheless, the TIM-3 checkpoint warrants further consideration as a potential immune target to combat these pathologies, using antibodies or drugs capable of reducing directly or indirectly the expression and function of the checkpoint, to restore an immune control.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France; University of Lille, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France.
| |
Collapse
|
7
|
Frontiers Production Office. Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
8
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|