1
|
Wu A, Zhang Y, Liu C, Zhumanov K, He T, Yan K, Li H, Fu S, Li X, Zhang W, Meng C, Zhang C, Sheng J, Ma Z, Xu M, Zhang J, Yi J, Wang Y. A novel IgG-Fc-Fused multiepitope vaccine against Brucella: robust immunogenicity. Microb Cell Fact 2025; 24:84. [PMID: 40229797 PMCID: PMC11998165 DOI: 10.1186/s12934-025-02713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025] Open
Abstract
Brucellosis is one of the most common zoonotic diseases caused by Brucella spp. However, there is currently no Brucella vaccine available for humans. Although some attenuated live vaccines have been approved for animals, their protective efficacy is suboptimal. In previous studies, we utilized an epitope- and structure-based vaccinology platform to identify the immunodominant epitopes of Brucella antigens OMP19, OMP16, OMP25, and L7/L12, and constructed the multi-epitope vaccine MEV-Fc against Brucella. In this study, OMP19, OMP16, OMP25, and L7/L12, and MEV-Fc was expressed and purified via an Escherichia coli expression system, which validated that MEV-Fc possesses high immunological efficacy and exerts a significant protective effect in BALB/c mice within the Brucella infection model. MEV-Fc enhanced Th1 and Th2 immune responses and strongly induced the production of the pro-inflammatory cytokine IFN-γ. Furthermore, MEV-Fc protected mice against Brucella infection compared to control group (PBS). In conclusion, our results provide new insights and data support for the development of human Brucella vaccines.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yuting Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Caidong Liu
- School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Kaiat Zhumanov
- Kazakh National Agrarian University, 050010, Almaty, Kazakhstan
| | - Tao He
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Kexin Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Shuangshaung Fu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xin Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wenxiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Changsuo Zhang
- Tiankang Biopharmaceutical Co., Ltd, 830032, Urumqi, Xinjiang, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Junbo Zhang
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou, 554300, China.
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Yueli Wang
- School of Medicine, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
2
|
Han W, Zhou R, Wang R, Dong Y, Muhammad Z, Wang B, Geng J, Wang H, Hou W. Computer-aided drug design for the double-membrane vesicle pore complex inhibitors against SARS-CoV-2. Front Microbiol 2025; 16:1562187. [PMID: 40226104 PMCID: PMC11985525 DOI: 10.3389/fmicb.2025.1562187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the ongoing global pandemic, has constituted the worst global health disaster in recent years. However, no antiviral drugs have proved clinically efficacious to combat SARS-CoV-2 infection. The SARS-CoV-2 double-membrane vesicle (DMV) pore complex, particularly for its positively charged residues R1613, R1614, R303, R305, and R306, which are highly conserved across β-coronaviruses and play a critical role in mediating RNA transport and virus replication, has been validated as an effective drug target. Here, we employed computer-aided drug design (CADD) techniques for the first time to screen the antiviral compounds against SARS-CoV-2 by targeting the crystal structure of the SARS-CoV-2 DMV nsp3-4 pore complex. A total of 486,387 drug compounds were subjected to virtual screening, such as toxicity prediction, ADMET prediction, molecular docking, and target analysis. The six compounds (three for each binding site) were selected based on their lowest binding energies. Notably, Compound 391 demonstrated the strongest binding affinity to the critical positively charged residues R1613 and R1614 at binding site 1, meanwhile, Compound 5,157 exhibited the most stable interactions with the essential positively charged residues R303, R305, and R306 at binding site 2. These results demonstrate that Compound 391 and Compound 5,157 exhibit greater potential antiviral effects, which provide a theoretical basis for further confirmation against SARS-CoV-2 in vitro and in vivo studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianjun Geng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
3
|
Adeleke MA. Computational Development of Transmission-Blocking Vaccine Candidates Based on Fused Antigens of Pre- and Post-fertilization Gametocytes Against Plasmodium falciparum. Bioinform Biol Insights 2025; 19:11779322241306215. [PMID: 40034580 PMCID: PMC11873872 DOI: 10.1177/11779322241306215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/21/2024] [Indexed: 03/05/2025] Open
Abstract
Plasmodium falciparum is the most fatal species of malaria parasites in humans. Attempts at developing vaccines against the malaria parasites have not been very successful even after the approval of the RTS, S/AS01 vaccine. There is a continuous need for more effective vaccines including sexual-stage antigens that could block the transmission of malaria parasites between mosquitoes and humans. Low immunogenicity, expression, and stability are some of the challenges of transmission-blocking vaccine (TBV). This study was designed to computationally identify TBV candidates based on fused antigens by combining highly antigenic peptides from prefertilization (Pfs230, Pfs48/45) and postfertilization (Pfs25, Pfs28) gametocytes. The peptides were selected based on their antigenicity, nonallergenicity, and lack of similarity with the human proteome. Two fused antigens vaccine candidates (FAVCs) were constructed using Flagellin Salmonella enterica (FAVC-FSE) and Cholera toxin B (FAVC-CTB) as adjuvants. The constructs were evaluated for their physicochemical properties, structural stability, immunogenicity, and potential to elicit cross-protection across multiple Plasmodium species. The results yielded antigenic peptides, with antigenicity scores between 0.7589 and 1.1821. The structural analysis of FAVC-FSE and FAVC-CTB showed a Z-score of -6.70 and -4.79, a Ramachandran plot of 96.94% and 94.86% with overall quality of 94.20% and 89.85%, respectively. The FAVCs contained CD8+, CD4+, and linear B-cell epitopes with antigenicity scores between 1.2089 and 2.8623, 0.5663 and 2.4132, and 1.5196 and 2.2212, respectively. Each FAVC generated 6 conformational B-cells. High population coverage values were recorded for the FAVCs. The ability of the FAVCs to trigger immune response was evaluated through an in silico immune stimulation. The low-binding interaction energy that resulted from molecular docking and dynamics simulations showed a strong affinity of FAVCs to Toll-like receptor 5 (TLR5). The results indicate that the FAVC-FSE vaccine candidate is more promising to interrupt P falciparum transmission and provides a baseline for experimental validation.
Collapse
Affiliation(s)
- Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Zhu F, Ma S, Xu Y, Zhou Z, Zhang P, Peng W, Yang H, Tan C, Chen J, Pan P. Development of a novel multi-epitope mRNA vaccine candidate to combat SFTSV pandemic. PLoS Negl Trop Dis 2025; 19:e0012815. [PMID: 39841716 DOI: 10.1371/journal.pntd.0012815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/03/2025] [Accepted: 12/29/2024] [Indexed: 01/24/2025] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) is a novel identified pathogen, despite two decades of research on SFTSV, the potential widespread threats pose a significant challenge for researchers in developing new treatment and prevention methods. In this present, we have developed a multi-epitope mRNA vaccine for SFTSV and valid it with in silico methods. We screened 9 immunodominant epitopes for cytotoxic T cells (CTL), 7 for helper T cells (HTL), and 8 for Linear B-cell (LBL) based on promising candidate protein Gn, Gc, Np, and NSs. All predicted epitopes demonstrated strong antigenicity without any potential harm to humans. Additionally, the high conservancy is required to cover different strains. All epitopes as well as adjuvants were constructed into a final vaccine, which was further assesd by calculating of physicochemical properties. Then, we docked the vaccine protein with immune receptors and analyzed the complexes with dynamic simulations to evaluate its affinity to receptors. Finally, the vaccine sequence was constructed into a mRNA sequence. The constructed vaccine is a potential candidate for combating SFTSV by stimulating protective humoral and cellular immune responses.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Caixia Tan
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
5
|
Zhu L, Cui X, Yan Z, Tao Y, Shi L, Zhang X, Yao Y, Shi L. Design and evaluation of a multi-epitope DNA vaccine against HPV16. Hum Vaccin Immunother 2024; 20:2352908. [PMID: 38780076 PMCID: PMC11123455 DOI: 10.1080/21645515.2024.2352908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.
Collapse
Affiliation(s)
- Lanfang Zhu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xiangjie Cui
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yufen Tao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
6
|
Zhu Y, He Y, Yin Z, Chen N, Qi X, Ding J, Li Y, Zhang F. Enhanced Immune Response Against Echinococcus Granulosus Through a CTLA-4/B7 Affinity-Based Vaccine. Vaccines (Basel) 2024; 12:1440. [PMID: 39772100 PMCID: PMC11680267 DOI: 10.3390/vaccines12121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Echinococcosis is a zoonotic infectious disease that poses a significant threat to the health of individuals living in rural regions. While vaccination represents a potential strategy for disease prevention, there is currently no effective vaccine available for humans to prevent cystic echinococcosis (CE). This study aimed to design a novel multi-epitope vaccine (MEV) against Echinococcus granulosus for human use, employing immunoinformatics methods. Methods: We identified core epitopes from two key antigens, EgA31 and EgG1Y162, and integrated them into the immunoglobulin variable region of CTLA-4 (CTLA-4lgV) to create the CVE31-162 vaccine construct. The secondary and tertiary structures of the CVE31-162 were established using bioinformatics methods. The interaction between the CVE31-162 and B7 molecules was assessed through molecular dynamics simulations. Finally, both in vitro and in vivo experiments were conducted to validate the effectiveness of the CVE31-162 against the immunological effects of Echinococcus granulosus. Results: Bioinformatics analysis indicated that CVE31-162 exhibits favorable antigenicity, stability, and non-allergenicity. Furthermore, CVE31-162 demonstrated a stable three-dimensional structural model. Molecular docking (MD) and molecular dynamics simulations (MDS) revealed a strong binding affinity between CVE31-162 and B7 molecules. Immune simulation results suggested that the vaccine elicits robust humoral and cell-mediated immune responses. Both in vitro and in vivo experiments demonstrated that immunized mice exhibited significantly elevated levels of antigen-specific antibodies and enhanced lymphocyte proliferation compared to the control group. Conclusions:CVE31-162, which is based on the interaction between CTLA-4 and B7, represents a promising multi-epitope vaccine for Echinococcus granulosus.
Collapse
Affiliation(s)
- Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China;
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (Y.H.); (Z.Y.); (J.D.)
| | - Ziyue Yin
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (Y.H.); (Z.Y.); (J.D.)
- School of Public Health, Guilin Medical University, Guilin 541100, China
| | - Na Chen
- Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (N.C.); (X.Q.)
| | - Xingxing Qi
- Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (N.C.); (X.Q.)
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (Y.H.); (Z.Y.); (J.D.)
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yujiao Li
- Post-Doctoral Research Station of the Clinical Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Fengbo Zhang
- Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (N.C.); (X.Q.)
| |
Collapse
|
7
|
Nejabat S, Khomartash MS, Mohammadimehr M, Adloo Z, Zanchi FB, Ghorbani M, Nezafat N. Immunoinformatics approach: Developing a multi-epitope vaccine with novel carriers targeting monkeypox virus. FASEB J 2024; 38:e70257. [PMID: 39679938 DOI: 10.1096/fj.202400757rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/12/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Since May 2022, the global spread of monkeypox virus (MPXV) has presented a significant threat to public health. Despite this, there are limited preventive measures available. In this study, different computational tools were employed to design a multi-epitope vaccine targeting MPXV. Three key MPXV proteins, M1R, B6R, and F3L, were chosen for epitope selection, guided by bioinformatic analyses to identify immunodominant epitopes for T- and B-cell activation. To enhance immune stimulation and facilitate targeted delivery of the vaccine to specific cells, the selected epitopes were linked to novel carriers, including the extracellular domain of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a 12-mer Clec9a binding peptide (CBP-12), and a Toll-like receptor 2 (TLR2) peptide ligand. The designed vaccine construct exhibited strong antigenicity along with nonallergenic and nontoxic properties, with favorable physicochemical characteristics. The validated vaccine's tertiary structure underwent evaluation for interactions with CD80/86, Clec9a, and TLR2 through molecular docking and molecular dynamics simulation. The results ensured the vaccine's stability and high affinity for the aforementioned receptors. In silico immune simulations studies revealed robust innate and adaptive immune responses, including enhanced mucosal immunity essential for protection against MPXV. Ultimately, the DNA sequence of the vaccine construct was synthesized and successfully cloned into the pET-22b(+) vector. Our study, through integration of computational predictions, suggests the proposed vaccine's potential efficacy in safeguarding against MPXV; however, further in vitro and in vivo validations are imperative to assess real-world effectiveness and safety.
Collapse
Affiliation(s)
- Sajjad Nejabat
- Science and Technology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mojgan Mohammadimehr
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Adloo
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fernando Berton Zanchi
- Laboratório de Bioinformática e Química Medicinal (LABIOQUIM), Fundação Oswaldo Cruz Rondônia, Porto Velho, Brazil
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Khan MS, Shakya M, Verma CK. Exploring immunogenic CD8 + T-cell epitopes for peptide-based vaccine development against evolving SARS-CoV-2 variants: An immunoinformatics approach. Virusdisease 2024; 35:553-566. [PMID: 39677846 PMCID: PMC11635080 DOI: 10.1007/s13337-024-00894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024] Open
Abstract
The COVID-19 pandemic originated in Wuhan in 2019 due to a novel SARS-COV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for the massive number of deaths across the globe. So far, several vaccines have been developed using highly antigenic Spike protein and authorized for emergency use, reducing the severity of the infection. Nonetheless, the virus continues to evolve through multiple mutations, resulting in numerous variants with enhanced transmission that evade the vaccine-induced immune response. Given the persistently mutating nature of the SARS-COV-2 virus, peptide-based vaccines with highly conserved epitopes may offer lasting protection against evolving variants. This study presents an immunoinformatics-based identification of potentially immunogenic CD8 + T-cell epitopes (CTLs) of Spike (S), Membrane (M), Nucleocapsid (N) and Envelope (E) proteins of SARS-COV-2. By utilizing the immunoinformatic approach, 21 epitopes have successfully been evaluated, where 15, 3, 2, and 1 epitopes are respectively from Spike, Membrane, Envelope and Nucleocapsid proteins. Out of these, 20 are found to be identical with experimentally verified immunogenic epitopes, except for the novel NTQEVFAQV epitope from spike protein. These epitopes show a high degree of conservation in both former variants of concerns (VOCs), variants of interest (VOIs) and current variants under monitoring (VUMs), are non-toxic, non-homologous to humans and have a wide range of global population coverage. Furthermore, utilizing molecular docking analysis followed by molecular dynamics simulation, these epitopes have been verified as having stable interactions with their respective HLA molecules. The described framework and projected immunogenic epitopes could significantly impact the development of SARS-COV-2 vaccines based on peptides. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00894-7.
Collapse
Affiliation(s)
- Mohd Sultan Khan
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| | - Madhvi Shakya
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| | - Chandan Kumar Verma
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| |
Collapse
|
9
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Hong Y, Kwak K. Both sides now: evolutionary traits of antigens and B cells in tolerance and activation. Front Immunol 2024; 15:1456220. [PMID: 39185403 PMCID: PMC11341355 DOI: 10.3389/fimmu.2024.1456220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
B cells are the cornerstone of our body's defense system, producing precise antibodies and safeguarding immunological memory for future protection against pathogens. While we have a thorough understanding of how naïve B cells differentiate into plasma or memory B cells, the early B cell response to various antigens-whether self or foreign-remains a thrilling and evolving area of study. Advances in imaging have illuminated the molecular intricacies of B cell receptor (BCR) signaling, yet the dynamic nature of B cell activation continues to reveal new insights based on the nature of antigen exposure. This review explores the evolutionary journey of B cells as they adapt to the unique challenges presented by pathogens. We begin by examining the specific traits of antigens that influence their pathogenic potential, then shift our focus to the distinct characteristics of B cells that counteract these threats. From foundational discoveries to the latest cutting-edge research, we investigate how B cells are effectively activated and distinguish between self and non-self antigens, ensuring a balanced immune response that defends against pathogenic diseases but not self-antigens.
Collapse
Affiliation(s)
- Youngjae Hong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhu Y, Yu M, Aisikaer M, Zhang C, He Y, Chen Z, Yang Y, Han R, Li Z, Zhang F, Ding J, Lu X. Contriving a novel of CHB therapeutic vaccine based on IgV_CTLA-4 and L protein via immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6323-6341. [PMID: 37424209 DOI: 10.1080/07391102.2023.2234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chronic infection induced by immune tolerance to hepatitis B virus (HBV) is one of the most common causes of hepatic cirrhosis and hepatoma. Fortunately, the application of therapeutic vaccine can not only reverse HBV-tolerance, but also serve a potentially effective therapeutic strategy for treating chronic hepatitis B (CHB). However, the clinical effect of the currently developed CHB therapeutic vaccine is not optimistic due to the weak immunogenicity. Given that the human leukocyte antigen CTLA-4 owns strong binding ability to the surface B7 molecules (CD80 and CD86) of antigen presenting cell (APCs), the immunoglobulin variable region of CTLA-4 (IgV_CTLA-4) was fused with the L protein of HBV to contrive a novel therapeutic vaccine (V_C4HBL) for CHB in this study. We found that the addition of IgV_CTLA-4 did not interfere with the formation of L protein T cell and B cell epitopes after analysis by means of immunoinformatics approaches. Meanwhile, we also found that the IgV_CTLA-4 had strong binding force to B7 molecules through molecular docking and molecular dynamics (MD) simulation. Notably, our vaccine V_C4HBL showed good immunogenicity and antigenicity by in vitro and in vivo experiments. Therefore, the V_C4HBL is promising to again effectively activate the cellular and humoral immunity of CHB patients, and provides a potentially effective therapeutic strategy for the treatment of CHB in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Maierhaba Aisikaer
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Chuntao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Yinyin Yang
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Rui Han
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - Xiaobo Lu
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
12
|
Elrashedy A, Nayel M, Salama A, Salama MM, Hasan ME. Bioinformatics approach for structure modeling, vaccine design, and molecular docking of Brucella candidate proteins BvrR, OMP25, and OMP31. Sci Rep 2024; 14:11951. [PMID: 38789443 PMCID: PMC11126717 DOI: 10.1038/s41598-024-61991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is a zoonotic disease with significant economic and healthcare costs. Despite the eradication efforts, the disease persists. Vaccines prevent disease in animals while antibiotics cure humans with limitations. This study aims to design vaccines and drugs for brucellosis in animals and humans, using protein modeling, epitope prediction, and molecular docking of the target proteins (BvrR, OMP25, and OMP31). Tertiary structure models of three target proteins were constructed and assessed using RMSD, TM-score, C-score, Z-score, and ERRAT. The best models selected from AlphaFold and I-TASSER due to their superior performance according to CASP 12 - CASP 15 were chosen for further analysis. The motif analysis of best models using MotifFinder revealed two, five, and five protein binding motifs, however, the Motif Scan identified seven, six, and eight Post-Translational Modification sites (PTMs) in the BvrR, OMP25, and OMP31 proteins, respectively. Dominant B cell epitopes were predicted at (44-63, 85-93, 126-137, 193-205, and 208-237), (26-46, 52-71, 98-114, 142-155, and 183-200), and (29-45, 58-82, 119-142, 177-198, and 222-251) for the three target proteins. Additionally, cytotoxic T lymphocyte epitopes were detected at (173-181, 189-197, and 202-210), (61-69, 91-99, 159-167, and 181-189), and (3-11, 24-32, 167-175, and 216-224), while T helper lymphocyte epitopes were displayed at (39-53, 57-65, 150-158, 163-171), (79-87, 95-108, 115-123, 128-142, and 189-197), and (39-47, 109-123, 216-224, and 245-253), for the respective target protein. Furthermore, structure-based virtual screening of the ZINC and DrugBank databases using the docking MOE program was followed by ADMET analysis. The best five compounds of the ZINC database revealed docking scores ranged from (- 16.8744 to - 15.1922), (- 16.0424 to - 14.1645), and (- 14.7566 to - 13.3222) for the BvrR, OMP25, and OMP31, respectively. These compounds had good ADMET parameters and no cytotoxicity, while DrugBank compounds didn't meet Lipinski's rule criteria. Therefore, the five selected compounds from the ZINC20 databases may fulfill the pharmacokinetics and could be considered lead molecules for potentially inhibiting Brucella's proteins.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohammed M Salama
- Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Liang H, Xu Y, Zhou C, Yao Y, Wang H, Yang X. Innovation-driven trend shaping COVID-19 vaccine development in China. Front Med 2023; 17:1096-1116. [PMID: 38102402 DOI: 10.1007/s11684-023-1034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 12/17/2023]
Abstract
Confronted with the Coronavirus disease 2019 (COVID-19) pandemic, China has become an asset in tackling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and mutation, with several innovative platforms, which provides various technical means in this persisting combat. Derived from collaborated researches, vaccines based on the spike protein of SARS-CoV-2 or inactivated whole virus are a cornerstone of the public health response to COVID-19. Herein, we outline representative vaccines in multiple routes, while the merits and plights of the existing vaccine strategies are also summarized. Likewise, new technologies may provide more potent or broader immunity and will contribute to fight against hypermutated SARS-CoV-2 variants. All in all, with the ultimate aim of delivering robust and durable protection that is resilient to emerging infectious disease, alongside the traditional routes, the discovery of innovative approach to developing effective vaccines based on virus properties remains our top priority.
Collapse
Affiliation(s)
- Yuntao Zhang
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Yuxiu Zhao
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Hongyang Liang
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Ying Xu
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Chuge Zhou
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Yuzhu Yao
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Hui Wang
- China National Biotec Group Company Limited, Beijing, 100029, China.
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing, 100029, China.
- National Engineering Technology Research Center of Combined Vaccines, Wuhan, 430207, China.
| |
Collapse
|
14
|
Wu A, Wang Y, Ali A, Xu Z, Zhang D, Zhumanov K, Sheng J, Yi J. Design of a multi-epitope vaccine against brucellosis fused to IgG-fc by an immunoinformatics approach. Front Vet Sci 2023; 10:1238634. [PMID: 37937155 PMCID: PMC10625910 DOI: 10.3389/fvets.2023.1238634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brucella, a type of intracellular Gram-negative bacterium, has unique features and acts as a zoonotic pathogen. It can lead to abortion and infertility in animals. Eliminating brucellosis becomes very challenging once it spreads among both humans and animals, putting a heavy burden on livestock and people worldwide. Given the increasing spread of brucellosis, it is crucial to develop improved vaccines for susceptible animals to reduce the disease's impact. Methods In this study, we effectively used an immunoinformatics approach with advanced computer software to carefully identify and analyze important antigenic parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides to enhance the vaccine's strength and effectiveness. We used computer programs to find four important parts of the Brucella bacteria that our immune system recognizes. Then, we carefully looked for eight parts that are recognized by a type of white blood cell called cytotoxic T cells, six parts recognized by T helper cells, and four parts recognized by B cells. We connected these parts together using a special link, creating a strong new vaccine. To make the vaccine even better, we added some extra parts called molecular adjuvants. These included something called human β-defensins 3 (hBD-3) that we found in a database, and another part that helps the immune system called PADRE. We attached these extra parts to the beginning of the vaccine. In a new and clever way, we made the vaccine even stronger by attaching a part from a mouse's immune system to the end of it. This created a new kind of vaccine called MEV-Fc. We used advanced computer methods to study how well the MEV-Fc vaccine interacts with certain receptors in the body (TLR-2 and TLR-4). Results In the end, Immunosimulation predictions showed that the MEV-Fc vaccine can make the immune system respond strongly, both in terms of cells and antibodies. Discussion In summary, our results provide novel insights for the development of Brucella vaccines. Although further laboratory experiments are required to assess its protective effect.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Adnan Ali
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhenyu Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Kairat Zhumanov
- College of Veterinary Medicine, Kazakhstan Kazakh State Agricultural University, Almaty, Kazakhstan
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
15
|
Hou W, Wu H, Wang S, Wang W, Wang B, Wang H. Designing a multi-epitope vaccine to control porcine epidemic diarrhea virus infection using immunoinformatics approaches. Front Microbiol 2023; 14:1264612. [PMID: 37779715 PMCID: PMC10538973 DOI: 10.3389/fmicb.2023.1264612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets with high mortality rates. However, current vaccines cannot provide complete protection against PEDV, so vaccine development is still necessary and urgent. Here, with the help of immunoinformatics approaches, we attempted to design a multi-epitope vaccine named rPMEV to prevent and control PEDV infection. The epitopes of rPMEV were constructed by 9 cytotoxic T lymphocyte epitopes (CTLs), 11 helper T lymphocyte epitopes (HTLs), 6 linear B cell epitopes (LBEs), and 4 conformational B cell epitopes (CBEs) based on the S proteins from the four representative PEDV G2 strains. To enhance immunogenicity, porcine β-defensin-2 (PBD-2) was adjoined to the N-terminal of the vaccine as an adjuvant. All of the epitopes and PBD-2 were joined by corresponding linkers and recombined into the multivalent vaccine, which is stable, antigenic, and non-allergenic. Furthermore, we adopted molecular docking and molecular dynamics simulation methods to analyze the interaction of rPMEV with the Toll-like receptor 4 (TLR4): a stable interaction between them created by 13 hydrogen bonds. In addition, the results of the immune simulation showed that rPMEV could stimulate both cellular and humoral immune responses. Finally, to raise the expression efficiency, the sequence of the vaccine protein was cloned into the pET28a (+) vector after the codon optimization. These studies indicate that the designed multi-epitope vaccine has a potential protective effect, providing a theoretical basis for further confirmation of its protective effect against PEDV infection in vitro and in vivo studies.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wenting Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
16
|
Guo WH, Zhu YJ, Haimiti G, Xie XR, Niu C, Li M, Shi J, Yin ZW, Yu MK, Ding JB, Zhang FB. Bioinformatics-based design of a fusion vaccine with CTLA-4 variable region to combat Brucella. Braz J Med Biol Res 2023; 56:e12938. [PMID: 37493775 PMCID: PMC10361638 DOI: 10.1590/1414-431x2023e12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Brucellosis has become a global zoonotic disease, seriously endangering the health of people all over the world. Vaccination is an effective strategy for protection against Brucella infection in livestock in developed countries. However, current vaccines are pathogenic to humans and pregnant animals, which limits their use. Therefore, it is very important to improve the safety and immune protection of Brucella vaccine. In this study, different bioinformatics approaches were carried out to predict the physicochemical properties, T/B epitope, and tertiary structure of Omp2b and Omp31. Then, these two proteins were sequentially linked, and the Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) variable region was fused to the N-terminal of the epitope sequence. In addition, molecular docking was performed to show that the structure of the fusion protein vaccine had strong affinity with B7 (B7-1, B7-2). This study showed that the designed vaccine containing CTLA-4 had high potency against Brucella, which could provide a reference for the future development of efficient brucellosis vaccines.
Collapse
Affiliation(s)
- W H Guo
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Y J Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - G Haimiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - X R Xie
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - C Niu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - M Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - J Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Z W Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - M K Yu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - J B Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - F B Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
17
|
Waqas M, Aziz S, Liò P, Khan Y, Ali A, Iqbal A, Khan F, Almajhdi FN. Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Front Immunol 2023; 14:1091941. [PMID: 36776835 PMCID: PMC9908764 DOI: 10.3389/fimmu.2023.1091941] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The current monkeypox (MPX) outbreak, caused by the monkeypox virus (MPXV), has turned into a global concern, with over 59,000 infection cases and 23 deaths worldwide. Objectives Herein, we aimed to exploit robust immunoinformatics approach, targeting membrane-bound, enveloped, and extracellular proteins of MPXV to formulate a chimeric antigen. Such a strategy could similarly be applied for identifying immunodominant epitopes and designing multi-epitope vaccine ensembles in other pathogens responsible for chronic pathologies that are difficult to intervene against. Methods A reverse vaccinology pipeline was used to select 11 potential vaccine candidates, which were screened and mapped to predict immunodominant B-cell and T-cell epitopes. The finalized epitopes were merged with the aid of suitable linkers, an adjuvant (Resuscitation-promoting factor), a PADRE sequence (13 aa), and an HIV TAT sequence (11 aa) to formulate a multivalent epitope vaccine. Bioinformatics tools were employed to carry out codon adaptation and computational cloning. The tertiary structure of the chimeric vaccine construct was modeled via I-TASSER, and its interaction with Toll-like receptor 4 (TLR4) was evaluated using molecular docking and molecular dynamics simulation. C-ImmSim server was implemented to examine the immune response against the designed multi-epitope antigen. Results and discussion The designed chimeric vaccine construct included 21 immunodominant epitopes (six B-cell, eight cytotoxic T lymphocyte, and seven helper T-lymphocyte) and is predicted non-allergen, antigenic, soluble, with suitable physicochemical features, that can promote cross-protection among the MPXV strains. The selected epitopes indicated a wide global population coverage (93.62%). Most finalized epitopes have 70%-100% sequence similarity with the experimentally validated immune epitopes of the vaccinia virus, which can be helpful in the speedy progression of vaccine design. Lastly, molecular docking and molecular dynamics simulation computed stable and energetically favourable interaction between the putative antigen and TLR4. Conclusion Our results show that the multi-epitope vaccine might elicit cellular and humoral immune responses and could be a potential vaccine candidate against the MPXV infection. Further experimental testing of the proposed vaccine is warranted to validate its safety and efficacy profile.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Ghazvini K, Keikha M. Multivalent vaccines against new SARS-CoV-2 hybrid variants. VACUNAS 2023; 24:76-77. [PMID: 35757082 PMCID: PMC9212962 DOI: 10.1016/j.vacun.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author
| |
Collapse
|
19
|
Aziz S, Almajhdi FN, Waqas M, Ullah I, Salim MA, Khan NA, Ali A. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front Immunol 2022; 13:1004804. [PMID: 36311762 PMCID: PMC9606759 DOI: 10.3389/fimmu.2022.1004804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The current global outbreak of monkeypox (MPX) disease, caused by Monkeypox virus (MPXV), has resulted in 16 thousand infection cases, five deaths, and has been declared a global health emergency of international concern by the World Health Organization. Given current challenges in the safety of existing vaccines, a vaccine to prevent MPX infection and/or onset of symptoms would significantly advance disease management. In this context, a multi-epitope-based vaccine could be a well-suited approach. Herein, we searched a publicly accessible database (Virus Pathogen Database and Analysis Resource) for MPXV immune epitopes from various antigens. We prioritized a group of epitopes (10 CD8+ T cells and four B-cell epitopes) using a computer-aided technique based on desirable immunological and physicochemical properties, sequence conservation criteria, and non-human homology. Three multi-epitope vaccines were constructed (MPXV-1–3) by fusing finalized epitopes with the aid of appropriate linkers and adjuvant (beta-defensin 3, 50S ribosomal protein L7/L12, and Heparin-binding hemagglutinin). Codon optimization and in silico cloning in the pET28a (+) expression vector ensure the optimal expression of each construct in the Escherichia Coli system. Two and three-dimensional structures of the constructed vaccines were predicted and refined. The optimal binding mode of the construct with immune receptors [Toll-like receptors (TLR2, TLR3, and TLR4)] was explored by molecular docking, which revealed high docking energies of MPXV-1–TLR3 (–99.09 kcal/mol), MPXV-2–TLR3 (–98.68 kcal/mol), and MPXV-3–TLR2 (–85.22 kcal/mol). Conformational stability and energetically favourable binding of the vaccine-TLR2/3 complexes were assessed by performing molecular dynamics simulations and free energy calculations (Molecular Mechanics/Generalized Born Surface Area method). In silico immune simulation suggested that innate, adaptive, and humoral responses will be elicited upon administration of such potent multi-epitope vaccine constructs. The vaccine constructs are antigenic, non-allergen, non-toxic, soluble, topographically exposed, and possess favourable physicochemical characteristics. These results may help experimental vaccinologists design a potent MPX vaccine.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Waqas
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- *Correspondence: Muhammad Waqas, ; Amjad Ali,
| | - Inam Ullah
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Amjad Ali
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra, Pakistan
- *Correspondence: Muhammad Waqas, ; Amjad Ali,
| |
Collapse
|
20
|
Neutralization activity of sera/IgG preparations from fully BNT162b2 vaccinated individuals against SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Kappa variants. Sci Rep 2022; 12:13524. [PMID: 35941265 PMCID: PMC9358380 DOI: 10.1038/s41598-022-17071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
In the present prospective study, 225 individuals in Kumamoto General Hospital, Japan, who received two-doses of BNT162b2 vaccine were enrolled/followed up over 150 days and neutralizing activity (NT50) of their sera and antiviral activity (EC50) of IgG purified from sera on day-60 post-1st-dose were determined against wild-type SARS-CoV-2 (SARS-CoV-2Wuhan) (n = 211) and 9 variants (Alpha, Beta, Gamma, Delta, and Kappa) (n = 45). Time-dependent changes of IgG-activity (n = 25) against SARS-CoV-2Wuhan and variants were also examined. Day-60 sera showed reduced NT50 by more than 50% against all variants examined, and greatest reduction was seen with Beta. IgG fractions of high-responders and moderate-responders showed similar fold-changes in EC50 against each variant compared to SARS-CoV-2Wuhan. Evaluation of EC50 of IgG obtained at different time-points (day-28 to -150) revealed time-dependent reduction of activity against all variants. However, against Delta, relatively long-lasting favorable antiviral activity (at least 150 days) was observed. Our data strongly suggest that the successful antecedent scale-up of mRNA-based vaccine administrations in Japan was the primary contributor to the lessening of the otherwise more devastating SARS-CoV-2 pandemic wave caused by the Delta variant. The present data that the effectiveness of vaccine against the then-dominant SARS-CoV-2 variant was likely associated with the moderation of the COVID-19 pandemic wave suggest that as in the case of influenza vaccines, the development of multivalent mRNA-based vaccines represent a generalizable approach to pre-emptively respond pandemic with mutable pathogens.
Collapse
|
21
|
Aziz S, Waqas M, Halim SA, Ali A, Iqbal A, Iqbal M, Khan A, Al-Harrasi A. Exploring whole proteome to contrive multi-epitope-based vaccine for NeoCoV: An immunoinformtics and in-silico approach. Front Immunol 2022; 13:956776. [PMID: 35990651 PMCID: PMC9382669 DOI: 10.3389/fimmu.2022.956776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Neo-Coronavirus (NeoCoV) is a novel Betacoronavirus (β-CoVs or Beta-CoVs) discovered in bat specimens in South Africa during 2011. The viral sequence is highly similar to Middle East Respiratory Syndrome, particularly that of structural proteins. Thus, scientists have emphasized the threat posed by NeoCoV associated with human angiotensin-converting enzyme 2 (ACE2) usage, which could lead to a high death rate and faster transmission rate in humans. The development of a NeoCoV vaccine could provide a promising option for the future control of the virus in case of human infection. In silico predictions can decrease the number of experiments required, making the immunoinformatics approaches cost-effective and convenient. Herein, with the aid of immunoinformatics and reverse vaccinology, we aimed to formulate a multi-epitope vaccine that may be used to prevent and treat NeoCoV infection. Based on the NeoCoV proteins, B-cell, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes were shortlisted. Four vaccines (Neo-1-4) were devised by fusing shortlisted epitopes with appropriate adjuvants and linkers. The secondary and three-dimensional structures of final vaccines were then predicted. The binding interactions of these potential vaccines with toll-like immune receptors (TLR-2, TLR-3, and TLR-4) and major histocompatibility complex molecules (MHC-I and II) reveal that they properly fit into the receptors' binding domains. Besides, Neo-1 and Neo-4 vaccines exhibited better docking energies of -101.08 kcal/mol and -114.47 kcal/mol, respectively, with TLR-3 as compared to other vaccine constructs. The constructed vaccines are highly antigenic, non-allergenic, soluble, non-toxic, and topologically assessable with good physiochemical characteristics. Codon optimization and in-silico cloning confirmed efficient expression of the designed vaccines in Escherichia coli strain K12. In-silico immune simulation indicated that Neo-1 and Neo-4 vaccines could induce a strong immune response against NeoCoV. Lastly, the binding stability and strong binding affinity of Neo-1 and Neo-4 with TLR-3 receptor were validated using molecular dynamics simulations and free energy calculations (Molecular Mechanics/Generalized Born Surface Area method). The final vaccines require experimental validation to establish their safety and effectiveness in preventing NeoCoV infections.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Maaz Iqbal
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| |
Collapse
|