1
|
Zhu Y, Lu Z, Wang Z, Liu J, Ning K. Based on the immune system: the role of the IL-2 family in pancreatic disease. Front Immunol 2025; 16:1480496. [PMID: 39958351 PMCID: PMC11825815 DOI: 10.3389/fimmu.2025.1480496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
The IL-2 family, consisting of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, is a key regulator of the immune response. As an important endocrine and digestive organ, the function of the pancreas is regulated by the immune system. Studies have shown that each cytokine of the IL-2 family influences the occurrence and development of pancreatic diseases by participating in the regulation of the immune system. In this paper, we review the structural and functional characteristics of IL-2 family members, focus on their molecular mechanisms in pancreatic diseases including acute pancreatitis, chronic pancreatitis and pancreatic cancer, and highlight the importance of the related proteins in the regulation of immune response and disease progression, which will provide valuable insights for new biomarkers in pancreatic diseases, early diagnosis of the diseases, assessment of the disease severity, and development of new therapeutic regimens. The insights of the study are summarized in the following sections.
Collapse
Affiliation(s)
| | | | | | | | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
MacDonald WJ, Purcell C, Pinho-Schwermann M, Stubbs NM, Srinivasan PR, El-Deiry WS. Heterogeneity in Cancer. Cancers (Basel) 2025; 17:441. [PMID: 39941808 PMCID: PMC11816170 DOI: 10.3390/cancers17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer heterogeneity is a major challenge in oncology, complicating diagnosis, prognostication, and treatment. The clinical heterogeneity of cancer, which leads to differential treatment outcomes between patients with histopathologically similar cancers, is attributable to molecular diversity manifesting through genetic, epigenetic, transcriptomic, microenvironmental, and host biology differences. Heterogeneity is observed between patients, individual metastases, and within individual lesions. This review discusses clinical implications of heterogeneity, emphasizing need for personalized approaches to overcome challenges posed by cancer's diverse presentations. Understanding of emerging molecular diagnostic and analytical techniques can provide a view into the multidimensional complexity of cancer heterogeneity. With over 90% of cancer-related deaths associated with metastasis, we additionally explore the role heterogeneity plays in treatment resistance and recurrence of metastatic lesions. Molecular insights from next-generation sequencing, single-cell transcriptomics, liquid biopsy technology, and artificial intelligence will facilitate the development of combination therapy regimens that can potentially induce lasting and even curative treatment outcomes.
Collapse
Affiliation(s)
- William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nolan M. Stubbs
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and Brown University Health, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Zhang Y, Qi Q, Zhu M, Peng Y, Bao Y, Liu J, Bi Y, Xiao M, Chi S, Liu Y. Association between serum levels of 12 different cytokines and short-term efficacy of chemoradiotherapy in esophageal squamous cell carcinoma. Discov Oncol 2025; 16:80. [PMID: 39843810 PMCID: PMC11754553 DOI: 10.1007/s12672-025-01823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has a poor prognosis, with chemoradiotherapy (CRT) being a key treatment method. This study focused on circulating cytokines as potential predictors of treatment response and prognosis in patients with ESCC. MATERIALS AND METHODS Serum samples were collected from 36 ESCC patients, and 12 different cytokines were quantified using a multiplex immunofluorescence assay. We used non-parametric Wilcoxon unpaired rank tests to examine the relationship between cytokine concentrations and clinical outcomes. The duration of progression-free survival was assessed through imaging studies and telephone follow-ups. Kaplan-Meier survival plots, analyzed with the log-rank test, were utilized to depict survival trends. RESULTS Pre-treatment serum IL-8 levels were significantly elevated in patients with lymphoid metastases (p = 0.036). Lower initial levels of IL-8 and IL-1β were observed in patients with partial response group compared to those with stable disease (p = 0.002, p = 0.01). Elevated baseline levels of IL-8 and interferon-gamma (IFN-γ) were correlated with a poorer prognosis. Higher levels of IL-5 and IFN-γ levels following therapy were associated with worse outcomes. CONCLUSIONS Our findings indicate that IL-8, IL-1β, IL-5, and IFN-γ may serve as potential biomarkers for treatment efficacy and prognosis in ESCC. Patients with low levels of IL-8 and IL-1β demonstrate a favorable response to CRT. Elevated serum levels of IL-8, IL-1β, IFN-γ, and IL-5 may predict poorer clinical outcomes.
Collapse
Affiliation(s)
- Yaping Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Qiufeng Qi
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Ming Zhu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Yun Peng
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Yanqing Bao
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Jun Liu
- Department of Radiotherapy, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Yanzhi Bi
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Min Xiao
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China
| | - Shaohua Chi
- Medical School, Soochow University, Suzhou, 215123, China
| | - Yongping Liu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China.
- Department of Oncology, Changzhou Tumor Hospital, Changzhou, 213002, Jiangsu, China.
| |
Collapse
|
4
|
Bhagwat AS, Torres L, Shestova O, Shestov M, Mellors PW, Fisher HR, Farooki SN, Frost BF, Loken MR, Gaymon AL, Frazee D, Rogal W, Frey N, Hexner EO, Luger SM, Loren AW, Martin ME, McCurdy SR, Perl AE, Stadtmauer EA, Brogdon JL, Fraietta JA, Hwang WT, Siegel DL, Plesa G, Aplenc R, Porter DL, June CH, Gill SI. Cytokine-mediated CAR T therapy resistance in AML. Nat Med 2024; 30:3697-3708. [PMID: 39333315 PMCID: PMC12118809 DOI: 10.1038/s41591-024-03271-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
Acute myeloid leukemia (AML) is a rapidly progressive malignancy without effective therapies for refractory disease. So far, chimeric antigen receptor (CAR) T cell therapy in AML has not recapitulated the efficacy seen in B cell malignancies. Here we report a pilot study of autologous anti-CD123 CAR T cells in 12 adults with relapsed or refractory AML. CAR T cells targeting CD123+ cells were successfully manufactured in 90.4% of runs. Cytokine release syndrome was observed in 10 of 12 infused individuals (83.3%, 90% confidence interval 0.5-0.97). Three individuals achieved clinical response (25%, 90% confidence interval 0.07-0.53). We found that myeloid-supporting cytokines are secreted during cell therapy and support AML blast survival via kinase signaling, leading to CAR T cell exhaustion. The prosurvival effect of therapy-induced cytokines presents a unique resistance mechanism in AML that is distinct from any observed in B cell malignancies. Our findings suggest that autologous CART manufacturing is feasible in AML, but treatment is associated with high rates of cytokine release syndrome and relatively poor clinical efficacy. Combining CAR T cell therapies with cytokine signaling inhibitors could enhance immunotherapy efficacy in AML and achieve improved outcomes (ClinicalTrials.gov identifier: NCT03766126 ).
Collapse
Affiliation(s)
- Anand S Bhagwat
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonel Torres
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maksim Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick W Mellors
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Han R Fisher
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saamia N Farooki
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin F Frost
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Avery L Gaymon
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diane Frazee
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter Rogal
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle Frey
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Selina M Luger
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison W Loren
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ellen Martin
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon R McCurdy
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander E Perl
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Stadtmauer
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joseph A Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Don L Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Aplenc
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David L Porter
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cell Therapy and Transplant, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lo YL, Li CY, Chou TF, Yang CP, Wu LL, Chen CJ, Chang YH. Exploring in vivo combinatorial chemo-immunotherapy: Addressing p97 suppression and immune reinvigoration in pancreatic cancer with tumor microenvironment-responsive nanoformulation. Biomed Pharmacother 2024; 175:116660. [PMID: 38701563 DOI: 10.1016/j.biopha.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-β/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.
Collapse
Affiliation(s)
- Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ching-Ping Yang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
6
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
7
|
van Eijck CWF, Sabroso-Lasa S, Strijk GJ, Mustafa DAM, Fellah A, Koerkamp BG, Malats N, van Eijck CHJ. A liquid biomarker signature of inflammatory proteins accurately predicts early pancreatic cancer progression during FOLFIRINOX chemotherapy. Neoplasia 2024; 49:100975. [PMID: 38335839 PMCID: PMC10873733 DOI: 10.1016/j.neo.2024.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is often treated with FOLFIRINOX, a chemotherapy associated with high toxicity rates and variable efficacy. Therefore, it is crucial to identify patients at risk of early progression during treatment. This study aims to explore the potential of a multi-omics biomarker for predicting early PDAC progression by employing an in-depth mathematical modeling approach. METHODS Blood samples were collected from 58 PDAC patients undergoing FOLFIRINOX before and after the first cycle. These samples underwent gene (GEP) and inflammatory protein expression profiling (IPEP). We explored the predictive potential of exclusively IPEP through Stepwise (Backward) Multivariate Logistic Regression modeling. Additionally, we integrated GEP and IPEP using Bayesian Kernel Regression modeling, aiming to enhance predictive performance. Ultimately, the FOLFIRINOX IPEP (FFX-IPEP) signature was developed. RESULTS Our findings revealed that proteins exhibited superior predictive accuracy than genes. Consequently, the FFX-IPEP signature consisted of six proteins: AMN, BANK1, IL1RL2, ITGB6, MYO9B, and PRSS8. The signature effectively identified patients transitioning from disease control to progression early during FOLFIRINOX, achieving remarkable predictive accuracy with an AUC of 0.89 in an independent test set. Importantly, the FFX-IPEP signature outperformed the conventional CA19-9 tumor marker. CONCLUSIONS Our six-protein FFX-IPEP signature holds solid potential as a liquid biomarker for the early prediction of PDAC progression during toxic FOLFIRINOX chemotherapy. Further validation in an external cohort is crucial to confirm the utility of the FFX-IPEP signature. Future studies should expand to predict progression under different chemotherapies to enhance the guidance of personalized treatment selection in PDAC.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain.
| | - Sergio Sabroso-Lasa
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Gaby J Strijk
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amine Fellah
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain; Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain.
| |
Collapse
|
8
|
Doppenberg D, Stoop TF, van Dieren S, Katz MHG, Janssen QP, Nasar N, Prakash LR, Theijse RT, Tzeng CWD, Wei AC, Zureikat AH, Groot Koerkamp B, Besselink MG. Serum CEA as a Prognostic Marker for Overall Survival in Patients with Localized Pancreatic Adenocarcinoma and Non-Elevated CA19-9 Levels Treated with FOLFIRINOX as Initial Treatment: A TAPS Consortium Study. Ann Surg Oncol 2024; 31:1919-1932. [PMID: 38170408 DOI: 10.1245/s10434-023-14680-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION About 25% of patients with localized pancreatic adenocarcinoma have non-elevated serum carbohydrate antigen (CA) 19-9 levels at baseline, hampering evaluation of response to preoperative treatment. Serum carcinoembryonic antigen (CEA) is a potential alternative. METHODS This retrospective cohort study from five referral centers included consecutive patients with localized pancreatic adenocarcinoma (2012-2019), treated with one or more cycles of (m)FOLFIRINOX, and non-elevated CA19-9 levels (i.e., < 37 U/mL) at baseline. Cox regression analyses were performed to assess prognostic factors for overall survival (OS), including CEA level at baseline, restaging, and dynamics. RESULTS Overall, 277 patients were included in this study. CEA at baseline was elevated (≥5 ng/mL) in 53 patients (33%) and normalized following preoperative therapy in 14 patients (26%). In patients with elevated CEA at baseline, median OS in patients with CEA normalization following preoperative therapy was 33 months versus 19 months in patients without CEA normalization (p = 0.088). At time of baseline, only elevated CEA was independently associated with (worse) OS (hazard ratio [HR] 1.44, 95% confidence interval [CI] 1.04-1.98). At time of restaging, elevated CEA at baseline was still the only independent predictor for (worse) OS (HR 1.44, 95% CI 1.04-1.98), whereas elevated CEA at restaging (HR 1.16, 95% CI 0.77-1.77) was not. CONCLUSIONS Serum CEA was elevated in one-third of patients with localized pancreatic adenocarcinoma having non-elevated CA19-9 at baseline. At both time of baseline and time of restaging, elevated serum CEA measured at baseline was the only predictor for (worse) OS. Therefore, serum CEA may be a useful tool for decision making at both initial staging and time of restaging in patients with non-elevated CA19-9.
Collapse
Affiliation(s)
- Deesje Doppenberg
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan van Dieren
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Matthew H G Katz
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quisette P Janssen
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Naaz Nasar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura R Prakash
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rutger T Theijse
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alice C Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer H Zureikat
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Gunturu DR, Hassan M, Bedi D, Datta P, Manne U, Samuel T. Unlocking the Potential of Therapy-Induced Cytokine Responses: Illuminating New Pathways in Cancer Precision Medicine. Curr Oncol 2024; 31:1195-1206. [PMID: 38534922 PMCID: PMC10968790 DOI: 10.3390/curroncol31030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/26/2024] Open
Abstract
Precision cancer medicine primarily aims to identify individual patient genomic variations and exploit vulnerabilities in cancer cells to select suitable patients for specific drugs. These genomic features are commonly determined by gene sequencing prior to therapy, to identify individuals who would be most responsive. This precision approach in cancer therapeutics remains a powerful tool that benefits a smaller pool of patients, sparing others from unnecessary treatments. A limitation of this approach is that proteins, not genes, are the ultimate effectors of biological functions, and therefore the targets of therapeutics. An additional dimension in precision medicine that considers an individual's cytokine response to cancer therapeutics is proposed. Cytokine responses to therapy are multifactorial and vary among individuals. Thus, precision is dictated by the nature and magnitude of cytokine responses in the tumor microenvironment exposed to therapy. This review highlights cytokine responses as modules for precision medicine in cancer therapy, including potential challenges. For solid tumors, both detectability of cytokines in tissue fluids and their being amenable to routine sensitive analyses could address the difficulty of specimen collection for diagnosis and monitoring. Therefore, in precision cancer medicine, cytokines offer rational targets that can be utilized to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Dilip R. Gunturu
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Mohammed Hassan
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA (T.S.)
| | - Deepa Bedi
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Pran Datta
- School of Medicine-Medicine-Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Temesgen Samuel
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA (T.S.)
| |
Collapse
|
10
|
Stoop TF, Theijse RT, Seelen LWF, Groot Koerkamp B, van Eijck CHJ, Wolfgang CL, van Tienhoven G, van Santvoort HC, Molenaar IQ, Wilmink JW, Del Chiaro M, Katz MHG, Hackert T, Besselink MG. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat Rev Gastroenterol Hepatol 2024; 21:101-124. [PMID: 38036745 DOI: 10.1038/s41575-023-00856-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Surgical resection combined with systemic chemotherapy is the cornerstone of treatment for patients with localized pancreatic cancer. Upfront surgery is considered suboptimal in cases with extensive vascular involvement, which can be classified as either borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In these patients, FOLFIRINOX or gemcitabine plus nab-paclitaxel chemotherapy is currently used as preoperative chemotherapy and is eventually combined with radiotherapy. Thus, more patients might reach 5-year overall survival. Patient selection for chemotherapy, radiotherapy and subsequent surgery is based on anatomical, biological and conditional parameters. Current guidelines and clinical practices vary considerably regarding preoperative chemotherapy and radiotherapy, response evaluation, and indications for surgery. In this Review, we provide an overview of the clinical evidence regarding disease staging, preoperative therapy, response evaluation and surgery in patients with borderline resectable pancreatic cancer or locally advanced pancreatic cancer. In addition, a clinical work-up is proposed based on the available evidence and guidelines. We identify knowledge gaps and outline a proposed research agenda.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rutger T Theijse
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Leonard W F Seelen
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christopher L Wolfgang
- Division of Surgical Oncology, Department of Surgery, New York University Medical Center, New York City, NY, USA
| | - Geertjan van Tienhoven
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Radiation Oncology, Amsterdam, Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht and St. Antonius Hospital Nieuwegein, Utrecht, Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
11
|
van Eijck CWF, Strijk G, Vietsch EE, van der Sijde F, Verheij M, Mustafa DAM, Vink M, Aerts JGJV, van Eijck CHJ, Willemsen M. FOLFIRINOX chemotherapy modulates the peripheral immune landscape in pancreatic cancer: Implications for combination therapies and early response prediction. Eur J Cancer 2024; 196:113440. [PMID: 37988843 DOI: 10.1016/j.ejca.2023.113440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND FOLFIRINOX chemotherapy has improved outcomes for pancreatic cancer patients, but poor long-term survival outcomes and high toxicity remain challenges. This study investigates the impact of FOLFIRINOX on plasma proteins and peripheral immune cells to guide immune-based combination therapies and, ideally, to identify a potential biomarker to predict early disease progression during FOLFIRINOX. METHODS Blood samples were collected from 86 pancreatic cancer patients before and two weeks after the first FOLFIRINOX cycle and subjected to comprehensive immune cell and proteome profiling. Principal Component Analysis and Linear Mixed Effect Regression models were used for data analysis. FOLFIRINOX efficacy was radiologically evaluated after the fourth cycle. RESULTS One cycle of FOLFIRINOX diminished tumour-cell-related pathways and enhanced pathways related to immune activation, illustrated by an increase in pro-inflammatory IL-18, IL-15, and TNFRSF4. Similarly, FOLFIRINOX promoted the activation of CD4 + and CD8 + T cells, the proliferation of NK(T), and the activation of antigen-presenting cells. Furthermore, high pre-treatment levels of VEGFA and PRDX3 and an elevation in FCRL3 levels after one cycle predicted early progression under FOLFIRINOX. Finally, patients with progressive disease exhibited high levels of inhibitory markers on B cells and CD8 + T cells, while responding patients exhibited high levels of activation markers on CD4 + and CD8 + T cell subsets. CONCLUSION FOLFIRINOX has immunomodulatory effects, providing a foundation for clinical trials exploring immune-based combination therapies that harness the immune system to treat pancreatic cancer. In addition, several plasma proteins hold potential as circulating predictive biomarkers for early prediction of FOLFIRINOX response in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Gaby Strijk
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Eveline E Vietsch
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Fleur van der Sijde
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Maaike Verheij
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Madelief Vink
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Marcella Willemsen
- Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Rocha Martins P, Luciano Pereira Morais K, de Lima Galdino NA, Jacauna A, Paula SOC, Magalhães WCS, Zuccherato LW, Campos LS, Salles PGO, Gollob KJ. Linking tumor immune infiltrate and systemic immune mediators to treatment response and prognosis in advanced cervical cancer. Sci Rep 2023; 13:22634. [PMID: 38114557 PMCID: PMC10730812 DOI: 10.1038/s41598-023-49441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Cervical cancer (CC) poses a significant burden on individuals in developing regions, exhibiting heterogeneous responses to standard chemoradiation therapy, and contributing to substantial mortality rates. Unraveling host immune dynamics holds promise for innovative therapies and discovery of clinically relevant biomarkers. We studied prospectively locally advanced CC patients pre-treatment, stratifying them as responders (R) or non-responders (NR). R patients had increased tumor-infiltrating lymphocytes (TILs), while NR patients showed elevated PD-1 scores, CD8+ and PD-L2+ TILs, and PD-L1 immune reactivity. NR patients exhibited higher systemic soluble mediators correlating with TIL immune markers. R patients demonstrated functional polarization of CD4 T cells (Th1, Th2, Th17, and Treg), while CD8+ T cells and CD68+ macrophages predominated in the NR group. Receiver operating characteristic analysis identified potential CC response predictors, including PD-L1-immunoreactive (IR) area, PD-L2, CD8, FGF-basic, IL-7, IL-8, IL-12p40, IL-15, and TNF-alpha. Dysfunctional TILs and imbalanced immune mediators contribute to therapeutic insufficiency, shedding light on local and systemic immune interplay. Our study informs immunological signatures for treatment prediction and CC prognosis.
Collapse
Affiliation(s)
- Patrícia Rocha Martins
- Pathology Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Mário Penna, Belo Horizonte, MG, Brazil
| | - Kátia Luciano Pereira Morais
- Translational Immuno-Oncology Lab, Education and Research Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Center for Research in Immuno-Oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Nayane Alves de Lima Galdino
- Translational Immuno-Oncology Lab, Education and Research Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Center for Research in Immuno-Oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Adriana Jacauna
- Pathology Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Wagner C S Magalhães
- Instituto Mário Penna, Belo Horizonte, MG, Brazil
- CCATES - Centro Colaborador do SUS: Avaliação de Tecnologias e Excelencia em Saude, UFMG, Belo Horizonte, Brazil
- Pontificia Universidade Catolica de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana W Zuccherato
- Instituto Mário Penna, Belo Horizonte, MG, Brazil
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Kenneth J Gollob
- Instituto Mário Penna, Belo Horizonte, MG, Brazil.
- Translational Immuno-Oncology Lab, Education and Research Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Center for Research in Immuno-Oncology (CRIO), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Center for Research in Immuno-Oncology (CRIO), Translational Immuno-Oncology Laboratory, Hospital Israelita Albert Einstein, Av. Albert Einstein, São Paulo, SP, 62705652-900, Brazil.
| |
Collapse
|
13
|
Merlano MC, Paccagnella M, Denaro N, Abbona A, Galizia D, Sangiolo D, Gammaitoni L, Fiorino E, Minei S, Bossi P, Licitra L, Garrone O. Baseline Values of Circulating IL-6 and TGF-β Might Identify Patients with HNSCC Who Do Not Benefit from Nivolumab Treatment. Cancers (Basel) 2023; 15:5257. [PMID: 37958430 PMCID: PMC10649732 DOI: 10.3390/cancers15215257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The immunotherapy of head and neck cancer induces a limited rate of long-term survivors at the cost of treating many patients exposed to toxicity without benefit, regardless of PD-L1 expression. The identification of better biomarkers is warranted. We analyzed a panel of cytokines, chemokines and growth factors, hereinafter all referred to as 'cytokines', as potential biomarkers in patients with head and neck cancer treated with nivolumab. MATERIALS AND METHODS A total of 18 circulating cytokines were analyzed. Samples were gathered at baseline (T0) and after 3 courses of nivolumab (T1) in patients with relapsed/metastatic disease. The data extracted at T0 were linked to survival; the comparison of T0-T1 explored the effect of immunotherapy. RESULTS A total of 22 patients were accrued: 64% current heavy smokers, 36% female and 14% had PS = 2. At T0, ROC analysis showed that IL-6, IL-8, IL-10 and TGF-β were higher in patients with poor survival. Cox analysis demonstrated that only patients with the IL-6 and TGF-β discriminate had good or poor survival, respectively. Longitudinal increments of CCL-4, IL-15, IL-2 and CXCL-10 were observed in all patients during nivolumab treatment. CONCLUSION In this small population with poor clinical characteristics, this study highlights the prognostic role of IL-6 and TGF-β. Nivolumab treatment is associated with a positive modulation of some Th1 cytokines, but it does not correlate with the outcome.
Collapse
Affiliation(s)
- Marco Carlo Merlano
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | | | - Nerina Denaro
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (O.G.)
| | - Andrea Abbona
- Translational Oncology ARCO Foundation, 12100 Cuneo, Italy;
| | - Danilo Galizia
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10060 Torino, Italy; (D.S.); (E.F.)
| | - Loretta Gammaitoni
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | - Erika Fiorino
- Department of Oncology, University of Turin, 10060 Torino, Italy; (D.S.); (E.F.)
| | - Silvia Minei
- Post-Graduate School of Specialization Medical Oncology, University of Bari “A. Moro”, 70120 Bari, Italy;
- Medical Oncology, A.U.O. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Paolo Bossi
- Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences, Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milan, 20133 Milan, Italy;
| | - Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (O.G.)
| |
Collapse
|
14
|
Fan YC, Fong YC, Kuo CT, Li CW, Chen WY, Lin JD, Bürtin F, Linnebacher M, Bui QT, Lee KD, Tsai YC. Tumor-derived interleukin-1 receptor antagonist exhibits immunosuppressive functions and promotes pancreatic cancer. Cell Biosci 2023; 13:147. [PMID: 37563620 PMCID: PMC10416534 DOI: 10.1186/s13578-023-01090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is a pernicious disease characterized by an immunosuppressive milieu that is unresponsive to current immunotherapies. Interleukin-1 receptor antagonist (IL-1Ra) is a natural anti-inflammatory cytokine; however, its contribution to cancer pathogenesis and immunosuppression remains elusive. In this research, we investigated the role and mechanism of IL-1Ra in malignant progression of PDA. RESULTS Through analyzing clinical dataset and examining the pathological tumor tissues and serum samples, we have demonstrated that IL-1Ra expression is elevated in human PDA and positively associated with malignant progression of PDA. To study the biological function of IL-1Ra in tumors, we generated a set of mouse pancreatic cancer cell lines with a knockout (KO) of the Il1rn gene, encoding IL-1Ra, and compared the tumor growth rates in immune-competent and immune-deficient mice. We found that the Il1rn KO cells exhibited greater tumor inhibition in immune-competent mice, highlighting the crucial role of a functional immune system in Il1rn KO-mediated anti-tumor response. Consistently, we found an increase in CD8+ T cells and a decrease in CD11b+Ly6G- immunosuppressive mononuclear population in the tumor microenvironment of Il1rn KO-derived tumors. To monitor the inhibitory effects of IL-1Ra on immune cells, we utilized a luciferase-based reporter CD4+ T cell line and splenocytes, which were derived from transgenic mice expressing ovalbumin-specific T cell receptors in CD8+ T cells, and mice immunized with ovalbumin. We showed that IL-1Ra suppressed T cell receptor signaling and inhibited antigen-specific interferon-γ (IFN-γ) secretion and cytolytic activity in splenocytes. CONCLUSIONS Our findings illustrate the immunosuppressive properties of the natural anti-inflammatory cytokine IL-1Ra, and provide a rationale for considering IL-1Ra-targeted therapies in the treatment of PDA.
Collapse
Affiliation(s)
- Yu-Ching Fan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Yu-Cin Fong
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, 10617, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei City, 10617, Taiwan
| | - Florian Bürtin
- Clinic of General Surgery, University Medical Center Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Quoc Thang Bui
- International Ph.D. Program for Cell Therapy and Regeneration Medicine (IPCTRM), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Der Lee
- International Ph.D. Program for Cell Therapy and Regeneration Medicine (IPCTRM), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, Natioanl Chung Hsing University, Taichung, Taiwan
- Cell Therapy and Regenerative Medicine Center and Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Inflammatory Cytokines and Radiotherapy in Pancreatic Ductal Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123215. [PMID: 36551971 PMCID: PMC9775272 DOI: 10.3390/biomedicines10123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge in clinical oncology. Surgery is the only potentially curative treatment. However, the majority of PDAC patients present with locally advanced/unresectable or metastatic disease, where palliative multiagent chemotherapy is the first-line treatment with the therapeutic intent to delay progression and prolong survival. For locally advanced/unresectable pancreatic cancer patients who are treated with chemotherapy, consolidative radiotherapy in the form concurrent chemoradiation or stereotactic ablative radiotherapy improves locoregional control and pain/symptom control. To improve clinical outcomes of PDAC patients, there is a dire need for discoveries that will shed more light on the pathophysiology of the disease and lead to the development of more efficacious treatment strategies. Inflammatory cytokines are known to play a role in mediating tumor progression, chemoresistance, and radioresistance in PDAC. A PubMed search on published articles related to radiotherapy, inflammatory cytokines, and pancreatic cancer patients in the English language was performed. This article primarily focuses on reviewing the clinical literature that examines the association of inflammatory cytokines with clinical outcomes and the effects of radiotherapy on inflammatory cytokines in PDAC patients.
Collapse
|