1
|
Yang Y, Yu P, Huang Y, Zhang W, Nie Y, Gao C. Metabolic engineering of Lactobacilli spp. for disease treatment. Microb Cell Fact 2025; 24:53. [PMID: 40050843 PMCID: PMC11887175 DOI: 10.1186/s12934-025-02682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND A variety of probiotics have been utilized as chassis strains and engineered to develop the synthetic probiotics for disease treatment. Among these probiotics, Lactobacilli, which are generally viewed as safe and capable of colonizing the gastrointestinal tract effectively, are widely used. We review recent advancements in the engineering of Lactobacilli for disease treatment. Specifically, the Lactobacilli that are used for the construction of synthetic probiotics, the application of these engineered strains for diseases treatment, and the therapeutic outcomes of these engineered microbes are summarized in this review. Moreover, the applications of these engineered strains for disease treatment are categorized based on their engineering strategies. Of note, we compare the advantages and disadvantages of various engineering strategies and offer insights for the future development of genetically modified Lactobacillus strains with stable and safe properties. SHORT CONCLUSION Our study comprehensively reviews researches on engineering diverse Lactobacillus strains for disease treatment, categorized by their engineering strategies, and emphasizes the importance of developing synthetic probiotics with stable and safe characteristics to enhance their therapeutic applications.
Collapse
Affiliation(s)
- Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China.
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yufei Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wanying Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanhong Nie
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650201, China
| | - Changshan Gao
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
2
|
Liu S, Zhang Y, Ma X, Zhan C, Ding N, Shi M, Zhang W, Yang S. Protective effects of engineered Lactobacillus crispatus strains expressing G-CSF on thin endometrium of mice. Hum Reprod 2024; 39:2305-2319. [PMID: 39178354 DOI: 10.1093/humrep/deae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/26/2024] [Indexed: 08/25/2024] Open
Abstract
STUDY QUESTION Does recombinant Lactobacillus expressing granulocyte colony-stimulating factor (G-CSF) have a better protective effect than the current treatment of thin endometrium (TE)? SUMMARY ANSWER This study suggested that the intrauterine injection of Lactobacillus crispastus (L. crispastus)-pPG612-G-CSF has a positive effect on preventing TE induced by 95% alcohol in mice. WHAT IS KNOWN ALREADY TE has a negative impact on the success rate of ART in patients, and is usually caused by intrauterine surgery, endometrial infection, or hormone drugs. Exogenous G-CSF can promote endometrial vascular remodelling and increase endometrial receptivity and the embryo implantation rate. Moreover, Lactobacillus plays a crucial role in maintaining and regulating the local microecological balance of the reproductive tract, and it could be a delivery carrier of the endometrial repair drug G-CSF. STUDY DESIGN, SIZE, DURATION We constructed engineered L. crispastus strains expressing G-CSF. The mice were divided into five groups: (i) Control group (C, n = 28), uteri were treated with preheated saline solution via intrauterine injection on the third and sixth day of oestrus; (ii) Model group (M, n = 35), where uteri were treated with 95% alcohol on the third day of oestrus and preheated saline solution on the sixth day of oestrus via intrauterine injection; (iii) L. crispatus-pPG612-treatment group (L, n = 45), where uteri were treated with 95% alcohol on the third day of oestrus and 0.1 ml × 108 CFU/ml L. crispatus-pPG612 on the sixth day of oestrus via intrauterine injection; (iv) L. crispatus-pPG612-treatment group (LG, n = 45), where uteri were treated with 95% alcohol on the third day of oestrus and 0.1 ml × 108 CFU/ml L. crispatus-pPG612-G-CSF on the sixth day of oestrus via intrauterine injection; (v) G-CSF-treatment group (G, n = 52), where uteri were treated with 95% alcohol on the third day of oestrus and 30 µg/kg G-CSF on the sixth day of oestrus via intrauterine injection. Then, we compared the effects of L. crispastus, L. crispatus-pPG612-G-CSF and G-CSF on endometrial thickness, angiogenesis, fibrosis, and inflammation in the TE mouse. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected uterine tissues for haematoxylin-eosin staining, immunohistochemical staining, Western blot and RT-PCR, as well as serum for ELISA and uterine flushing solution for high-throughput sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Compared with those in the M group (the mice of the group were intrauterine injected 95% alcohol and treated with saline solution), the L. crispatus-pPG612-G-CSF strain increased the thickness of the endometrium (P < 0.001) and the number of blood vessels and glands (both P < 0.001), enhanced the expression of cytokeratin 19 (CK19) (P < 0.001), vimentin (Vim) (P < 0.001), vascular endothelial growth factor-A (P < 0.001), and CD34 (P < 0.001), and decreased fibrosis levels (P = 0.004). In addition, the high-throughput sequencing results indicated that the L. crispatus-pPG612-G-CSF strain could decrease the abundance of Pseudomonas (P = 0.044) and Actinomyces spp. (P = 0.094) in TE mice and increased the average number of embryos (P = 0.036). Finally, the L. crispatus-pPG612-G-CSF strain was preliminarily confirmed to activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signalling pathway and enhance the mRNA expression of hypoxia-inducible factor-1α (P < 0.001), vascular endometrial growth factor (P = 0.003), and endothelial cell nitric oxide synthase (P = 0.003) in mouse uterine tissue. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Therapy with the L. crispatus-pPG612-G-CSF strain has tremendous potential to accelerate the reparative processes of TE. However, we have reported only the expression of genes and proteins related to the PI3K/AKT pathway, and numerous other mechanisms may also be involved in the restoration of the endometrium by L. crispatus-pPG612-G-CSF. WIDER IMPLICATIONS OF THE FINDINGS The results from the study provide new ideas and suggest new methods for TE treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was financially supported by the Project of Science and Technology Development Plan of Jilin Province (grant number 20210101232JC), the Science and Technology Plan Item of Jilin Provincial Education Department (grant number JT53101022010), and the Doctoral Research Start-up Fund of Jilin Medical University (grant numbers JYBS2021014LK and 2022JYBS006KJ). The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.
Collapse
Affiliation(s)
- Shuang Liu
- Reproductive Immunology Laboratory, Basic Medical College, Jilin Medical University, Jilin, China
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yingnan Zhang
- Chronic Disease Laboratory, School of Public Health, Jilin Medical University, Jilin, China
- Department of Biology, College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Xin Ma
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chenglin Zhan
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ning Ding
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mai Shi
- Chronic Disease Laboratory, School of Public Health, Jilin Medical University, Jilin, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jilin Medical University, Jilin, China
| | - Shubao Yang
- Reproductive Immunology Laboratory, Basic Medical College, Jilin Medical University, Jilin, China
| |
Collapse
|
3
|
He X, Chen W, Zhou X, Hu G, Wei J, Liu Y, Cai L, Zhang Z, Chen T. The Therapeutic Potential of Lactobacillus crispatus for Chronic Endometritis: A Comprehensive Clinical Trial and Experimental Investigation. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10349-6. [PMID: 39172215 DOI: 10.1007/s12602-024-10349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Chronic endometritis (CE) is common in patients with infertility, and it is challenging to treat with antibiotics as bacteria often acquire resistance to the antibiotics, which leads to frequent recurrence of the condition. Probiotics, especially Lactobacillus species, are known for their usefulness in treating reproductive infections. This study evaluated Lactobacillus crispatus chen 01 (L. crispatus chen 01) isolated from healthy women who were 22-30 years old and married with children. In vitro experiments showed that L. crispatus chen 01 inhibited pathogens and reduced inflammation in CE mice by downregulating inflammatory proteins (TLR, MyD88, and p65/p-p65; L + Abx vs M, P < 0.01), improving histopathological features, and inhibiting bacterial growth. It also regulated endometrial processes, such as enhancing embryo implantation (BMP2 and Wnt4, L + Abx vs M, P < 0.01) via the Wnt/β-catenin pathway, leading to increased pregnancy rates (L + Abx vs M, 100% vs 0%) in mice. In clinical trials, L. crispatus chen 01 improved progesterone levels (P = 0.0038), pregnancy rates (C vs Abx + L. c, 76.19% vs 87.18%), and pathological changes in CE patients. The findings from this study identify the administration of L. crispatus chen 01 as a promising intervention for CE that could improve pregnancy rates.
Collapse
Affiliation(s)
- Xia He
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Obstetrics & Gynecology, the Ninth Hospital in Nanchang and The Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Weijun Chen
- Department of Reproductive Medicine, the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330001, Jiangxi, China
| | - Xiaoni Zhou
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Gang Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yan Liu
- Department of Reproductive Medicine, the People's Hospital of Ganzhou, Ganzhou, 341099, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Zhi Zhang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330036, Jiangxi, China.
| |
Collapse
|
4
|
Song S, Wang A, Wu S, Li H, He H. Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:39. [PMID: 39073624 PMCID: PMC11286705 DOI: 10.1007/s10856-024-06807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
The process of endometrial repair after injury involves the synergistic action of various cells including immune cells and stem cells. In this study, after combing Fibrinogen(Fg) with poly(L-lacticacid)-co-poly(ε-caprolactone)(P(LLA-CL)) by electrospinning, we placed Fg/P(LLA-CL) into the uterine cavity of endometrium-injured rats, and bioinformatic analysis revealed that Fg/P(LLA-CL) may affect inflammatory response and stem cell biological behavior. Therefore, we verified that Fg/P(LLA-CL) could inhibit the lipopolysaccharide (LPS)-stimulated macrophages from switching to the pro-inflammatory M1 phenotype in vitro. Moreover, in the rat model of endometrial injury, Fg/P(LLA-CL) effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype and enhanced the presence of mesenchymal stem cells at the injury site. Overall, Fg/P(LLA-CL) exhibits significant influence on macrophage polarization and stem cell behavior in endometrial injury, justifying further exploration for potential therapeutic applications in endometrial and other tissue injuries.
Collapse
Affiliation(s)
- Sirui Song
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Anfeng Wang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Siyu Wu
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Hongbing He
- Shanghai Pine & Power Biotech Co. Ltd, Shanghai, 201108, China.
| |
Collapse
|
5
|
Huang X, Yang X, Huang J, Wei L, Mao Y, Li C, Zhang Y, Chen Q, Wu S, Xie L, Sun C, Zhang W, Wang J. Human amnion mesenchymal stem cells promote endometrial repair via paracrine, preferentially than transdifferentiation. Cell Commun Signal 2024; 22:301. [PMID: 38822356 PMCID: PMC11140932 DOI: 10.1186/s12964-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-β1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.
Collapse
Affiliation(s)
- Xiyue Huang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jinglin Huang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Ling Wei
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yanhua Mao
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Qiuhong Chen
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Shasha Wu
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Lele Xie
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China.
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China.
| | - Jia Wang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China.
| |
Collapse
|
6
|
Xiao J, Wang L, Zhuang Y, Zhu Q, Li W, Liao H, Chen X, Liu Z. The deubiquitinase OTUB2 promotes cervical cancer growth through stabilizing FOXM1. Am J Transl Res 2024; 16:75-84. [PMID: 38322554 PMCID: PMC10839374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/06/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein Otubain2 (OTUB2) is an important cysteine protease with deubiquitinase activity in the OTU family. However, the role of OTUB2 in cervical cancer (CC) has not been investigated. METHODS OTUB2 expression was analyzed employing the CC data from The Cancer Genome Atlas (TCGA) database. Western blot and qRT-PCR analysis were performed to identify OTUB2 expression in CC. The oncogenic function of OTUB2 was identified through a series of in vitro and in vivo experiments. Tandem Mass Tag™ Quantitative Proteomics examination was used to identify potential targets of OTUB2. RESULTS OTUB2 was overexpressed in CC and was related to poor prognosis of patients. In our in-house cohort, we also showed that OTUB2 was overexpressed in tumor tissues of CC compared to para-tumor. Knockdown of OTUB2 suppressed CC cell growth whereas OTUB2 upregulation fostered the proliferation of cancer cells. Forkhead box M1 (FOXM1) was found to be a target of OTUB2. FOXM1 can be positively regulated by OTUB2 in CC cells. In human CC tissues, protein level of FOXM1 was positively correlated with OTUB2. FOXM1 was found to play a critical role in OTUB2-mediated CC cell growth. Mechanistically, OTUB2 could bind FOXM1 and deubiquitinate FOXM1 to stabilize it. CONCLUSION OTUB2 promotes CC progression through deubiquitinating and stabilizing FOXM1.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Reproductive Medicine Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, PR China
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Liqun Wang
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Yuan Zhuang
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Qizhou Zhu
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Weimei Li
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Hong Liao
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Xiaofang Chen
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health HospitalNanchang 330006, Jiangxi, PR China
| | - Zhaoxia Liu
- Department of Reproductive Medicine Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, PR China
| |
Collapse
|
7
|
Costa-Fujishima M, Yazdanpanah A, Horne S, Lamont A, Lopez P, Farr Zuend C, Birse K, Taverner M, Greenslade R, Abou M, Noel-Romas L, Abrenica B, Ajibola O, Ikeogu N, Su RC, McKinnon LR, Pymar H, Poliquin V, Berard AR, Burgener AD, Murooka TT. Nonoptimal bacteria species induce neutrophil-driven inflammation and barrier disruption in the female genital tract. Mucosal Immunol 2023; 16:341-356. [PMID: 37121385 DOI: 10.1016/j.mucimm.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Neutrophil recruitment and activation within the female genital tract are often associated with tissue inflammation, loss of vaginal epithelial barrier integrity, and increased risk for sexually transmitted infections, such as HIV-1. However, the direct role of neutrophils on vaginal epithelial barrier function during genital inflammation in vivo remains unclear. Using complementary proteome and immunological analyses, we show high neutrophil influx into the lower female genital tract in response to physiological surges in progesterone, stimulating distinct stromal, immunological, and metabolic signaling pathways. However, despite the release of extracellular matrix-modifying proteases and inflammatory mediators, neutrophils contributed little to physiological mucosal remodeling events such as epithelial shedding or re-epithelialization during transition from diestrus to estrus phase. In contrast, the presence of bacterial vaginosis-associated bacteria resulted in a rapid and sustained neutrophil recruitment, resulting in vaginal epithelial barrier leakage and decreased cell-cell junction protein expression in vivo. Thus, neutrophils are important mucosal sentinels that rapidly respond to various biological cues within the female genital tract, dictating the magnitude and duration of the ensuing inflammatory response at steady state and during disease processes.
Collapse
Affiliation(s)
- Marina Costa-Fujishima
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Atta Yazdanpanah
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Samantha Horne
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Alana Lamont
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada; National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Paul Lopez
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Christina Farr Zuend
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
| | - Kenzie Birse
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Morgan Taverner
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | - Riley Greenslade
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Max Abou
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Laura Noel-Romas
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Bernard Abrenica
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Oluwaseun Ajibola
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Nnamdi Ikeogu
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada
| | - Ruey-Chyi Su
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada; National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Lyle R McKinnon
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada; Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa; Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Helen Pymar
- University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Vanessa Poliquin
- University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Alicia R Berard
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada
| | - Adam D Burgener
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA; University of Manitoba, Department of Obstetrics, Gynecology, and Reproductive Sciences, Winnipeg, Canada; Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas T Murooka
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, Canada; University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada.
| |
Collapse
|
8
|
Wu F, Kong Y, Chen W, Liang D, Xiao Q, Hu L, Tan X, Wei J, Liu Y, Deng X, Liu Z, Chen T. Improvement of vaginal probiotics Lactobacillus crispatus on intrauterine adhesion in mice model and in clinical practice. BMC Microbiol 2023; 23:78. [PMID: 36949381 PMCID: PMC10032012 DOI: 10.1186/s12866-023-02823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a frequent acquired endometrial condition, for which there is no effective preventive or treatment. Previous studies have found that vaginal microbiota dysregulation is closely related to endometrial fibrosis and IUA. Therefore, we wondered whether restoration of vaginal microbiota by vaginal administration of L. crispatus could prevent endometrial fibrosis and ameliorate IUA. RESULTS First, we created a mechanically injured mouse model of IUA and restored the mice's vaginal microbiota by the addition of L. crispatus convolvulus. The observations suggested that intrauterine injections of L. crispatus significantly decreased the degree of uterine fibrosis, the levels of IL-1β and TNF-α in blood, and downregulated the TGF-β1/SMADs signaling pathway in IUA mice. A therapy with L. crispatus considerably raised the abundance of the helpful bacteria Lactobacillus and Oscillospira and restored the balance of the vaginal microbiota in IUA mice, according to high-throughput sequencing. Then we conducted a randomized controlled trial to compare the therapeutic effect of L. crispatus with estrogen after transcervical resection of adhesion (TCRA). And the results showed that vaginal probiotics had a better potential to prevent intrauterine adhesion than estrogen. CONCLUSIONS This study confirmed that L. crispatus could restore vaginal microbiota after intrauterine surgery, inhibit endometrial fibrosis, and finally play a preventive and therapeutic role in IUA. At the same time, it is a new exploration for the treatment of gynecological diseases with vaginal probiotics. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/ , identifier (ChiCTR1900022522), registration time: 15/04/2019.
Collapse
Affiliation(s)
- Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijuan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yujuan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Zhao Z, Mao X, Zheng Y, Liu Y, Zhao S, Yao S, Xu D, Zhao X. Research progress in the correlation between reproductive tract microbiota and intrauterine adhesion. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1495-1503. [PMID: 36481627 PMCID: PMC10930615 DOI: 10.11817/j.issn.1672-7347.2022.220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Intrauterine adhesion (IUA) is caused by damage of the basal layer of endometrium, which leads to fibrosis of the endometrium and the formation of adhesion, resulting in partial or complete occlusion of the uterine cavity, abnormal menstruation, infertility or recurrent miscarriage. The prevalence of IUA in women has been increasing in recent years, and the high recurrence rate of moderate to severe IUA makes IUA treatment more challenging. Iatrogenic endometrial injury is the main cause of IUA. However, the incidence of IUA and the severity of IUA vary among patients who have received similar uterine operations, suggesting that there may be other synergistic factors in the development of IUA. There is a certain correlation between the pathogenesis and the microbiota of the gential tract. In many IUA patients, it has been observed that the probiotics such as Lactobacillus in the vagina is significant reduced, and the pathogenic bacteria such as Gardnerella and Prevotella are excessive growth. The reproductive tract microbiota can be involved in the development and progression of IUA via impacting immune function and metabolism.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Xuetao Mao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Yi Zheng
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ying Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Siyi Zhao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shuoyi Yao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|