1
|
Abida, Alhuthali HM, Alshehri JM, Alkathiri A, Almaghrabi ROM, Alsaeed SS, Albebi SAH, Almethn RM, Alfuraydi BA, Alharbi SB, Kamal M, Imran M. Exosomes in infectious diseases: insights into leishmaniasis pathogenesis, immune modulation, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4913-4931. [PMID: 39702600 DOI: 10.1007/s00210-024-03702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Leishmaniasis continues to be a critical international health issue due to the scarcity of efficient treatment and the development of drug tolerance. New developments in the research of extracellular vesicles (EVs), especially exosomes, have revealed novel disease management approaches. Exosomes are small vesicles that transport lipids, nucleic acids, and proteins in cell signalling. Its biogenesis depends on several cellular processes, and their functions in immune response, encompassing innate and adaptive immunity, underline their function in the pathogen-host interface. Exosomes play a significant role in the pathogenesis of some parasitic infections, especially Leishmaniasis, by helping parasites escape host immunity and promote disease progression. This article explains that in the framework of parasitic diseases, exosomes can act as master regulators that define the pathogenesis of the disease, as illustrated by the engagement of exosomes in the Leishmaniasis parasite and immune escape processes. Based on many published articles on Leishmaniasis, this review aims to summarize the biogenesis of exosomes, the properties of the cargo in exosomes, and the modulation of immune responses. We delve deeper into the prospect of using exosomes for the therapy of Leishmaniasis based on the possibility of using these extracellular vesicles for drug delivery and as diagnostic and prognostic biomarkers. Lastly, we focus on the recent research perspectives and future developments, underlining the necessity to continue the investigation of exosome-mediated approaches in Leishmaniasis treatment. Thus, this review intends to draw attention to exosomes as a bright new perspective in the battle against this disabling affliction.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Jawaher Mohammad Alshehri
- Optometry Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Afnan Alkathiri
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Ruba Omar M Almaghrabi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | | | | | | | | | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
2
|
Keshtkar S, Asvar Z, Najafi H, Heidari M, Kaviani M, Sarvestani FS, Tamaddon AM, Sadati MS, Hamidizadeh N, Azarpira N. Exosomes as natural vectors for therapeutic delivery of bioactive compounds in skin diseases. Front Pharmacol 2025; 16:1485769. [PMID: 40356952 PMCID: PMC12066514 DOI: 10.3389/fphar.2025.1485769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Skin diseases are a broad category of diseases and each has complex conditions, which makes it challenging for dermatologists to provide targeted treatment. Exosomes are natural vesicles secreted by cells and play a key role in cell communication. Due to their unique characteristics, including inherent stability, minimal immunogenicity, high biocompatibility, and exceptional ability to penetrate cells, exosomes are being explored as potential delivery vehicles for therapeutics across various diseases including skin problems. Utilizing exosomes for drug delivery in skin diseases can improve treatment outcomes and reduce the side effects of traditional drug delivery methods. Indeed, exosomes can be engineered or utilized as an innovative approach to deliver therapeutic agents such as small molecule drugs, genes, or proteins specifically to affected skin cells. In addition to targeting specific skin cells or tissues, these engineered exosome-based nanocarriers can reduce off-target effects and improve drug efficacy. Hence, this article highlights the transformative potential of this technology in revolutionizing drug delivery in dermatology and improving patient outcomes.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Sadat Sadati
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Hamidizadeh
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Adugna A, Amare GA, Jemal M. Machine Learning Approach and Bioinformatics Analysis Discovered Key Genomic Signatures for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma. Cancer Inform 2025; 24:11769351251333847. [PMID: 40291818 PMCID: PMC12033511 DOI: 10.1177/11769351251333847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Hepatitis B virus (HBV) causes liver cancer, which is the third most common cause of cancer-related death worldwide. Chronic inflammation via HBV in the host hepatocytes causes hepatocyte remodeling (hepatocyte transformation and immortalization) and hepatocellular carcinoma (HCC). Recognizing cancer stages accurately to optimize early screening and diagnosis is a primary concern in the outlook of HBV-induced hepatocyte remodeling and liver cancer. Genomic signatures play important roles in addressing this issue. Recently, machine learning (ML) models and bioinformatics analysis have become very important in discovering novel genomic signatures for the early diagnosis, treatment, and prognosis of HBV-induced hepatic cell remodeling and HCC. We discuss the recent literature on the ML approach and bioinformatics analysis revealed novel genomic signatures for diagnosing and forecasting HBV-associated hepatocyte remodeling and HCC. Various genomic signatures, including various microRNAs and their associated genes, long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs), have been discovered to be involved in the upregulation and downregulation of HBV-HCC. Moreover, these genetic biomarkers also affect different biological processes, such as proliferation, migration, circulation, assault, dissemination, antiapoptosis, mitogenesis, transformation, and angiogenesis in HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Ethiopia
| |
Collapse
|
4
|
Cascabulho CM, Horita SIM, Beghini DG, Menna-Barreto RFS, Monsores ACHMG, Bertho AL, Henriques-Pons A. Plasma Microvesicles May Contribute to Muscle Damage in the mdx Mouse Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2025; 26:3499. [PMID: 40331939 PMCID: PMC12026684 DOI: 10.3390/ijms26083499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) are cell-derived lipid-bound vesicles divided into apoptotic bodies, microvesicles (MVs), and exosomes based on their biogenesis, release pathway, size, content, and functions. EVs are intercellular mediators that significantly affect muscle diseases such as Duchenne muscular dystrophy (DMD). DMD is a fatal X-linked disorder caused by mutations in the dystrophin gene, leading to muscle degeneration. Mdx mice are the most commonly used model to study the disease, and in this study, we phenotypically characterized plasma MVs from mdx mice by flow cytometry. Furthermore, we assessed the ability of plasma MVs to modulate muscle inflammation, damage, and/or regeneration by intramuscular injection of MVs from mdx mice into mdx or DBA/2 mice as a control. In both mouse lineages, platelets and erythrocytes were the primary sources of MVs, and CD3+ CD4+ MVs were observed only in mdx mice. We also observed that plasma MVs from mdx mice induced muscle damage in mdx mice but not in DBA/2 mice, while plasma MVs from DBA/2 mice did not induce muscle damage in either mouse lineage. These results indicate that plasma MVs from mdx are potentially pathogenic. However, this condition also depends on the muscular tissue status, which must be responsive due to active inflammatory or regenerative responses.
Collapse
Affiliation(s)
- Cynthia Machado Cascabulho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | - Samuel Iwao Maia Horita
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
- Laboratório de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | | | - Ana Carolina Heber Max Guimarães Monsores
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| | - Alvaro Luiz Bertho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil; (S.I.M.H.); (D.G.B.); (A.C.H.M.G.M.); (A.H.-P.)
| |
Collapse
|
5
|
Alfred MO, Ochola L, Okeyo K, Bae E, Ogongo P, Odongo D, Njaanake K, Robinson JP. Application of microphysiological systems to unravel the mechanisms of schistosomiasis egg extravasation. Front Cell Infect Microbiol 2025; 15:1521265. [PMID: 40041145 PMCID: PMC11876127 DOI: 10.3389/fcimb.2025.1521265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Despite decades of control efforts, the prevalence of schistosomiasis remains high in many endemic regions, posing significant challenges to global health. One of the key factors contributing to the persistence of the disease is the complex life cycle of the Schistosoma parasite, the causative agent, which involves multiple stages of development and intricate interactions with its mammalian hosts and snails. Among the various stages of the parasite lifecycle, the deposition of eggs and their migration through host tissues is significant, as they initiate the onset of the disease pathology by inducing inflammatory reactions and tissue damage. However, our understanding of the mechanisms underlying Schistosoma egg extravasation remains limited, hindering efforts to develop effective interventions. Microphysiological systems, particularly organ-on-a-chip systems, offer a promising approach to study this phenomenon in a controlled experimental setting because they allow the replication of physiological microenvironments in vitro. This review provides an overview of schistosomiasis, introduces the concept of organ-on-a-chip technology, and discusses its potential applications in the field of schistosomiasis research.
Collapse
Affiliation(s)
- Martin Omondi Alfred
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Kennedy Okeyo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Euiwon Bae
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Paul Ogongo
- Department of Tropical and Infectious Diseases, Kenya Institute of Primate Research, Nairobi, Kenya
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - David Odongo
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - Kariuki Njaanake
- Department of Medical Microbiology and Immunology, University of Nairobi, Hospital Road, Kenyatta National Hospital, Nairobi, Kenya
| | - J. Paul Robinson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
7
|
Kanannejad Z, Arab S, Soleimanian S, Mazare A, Kheshtchin N. Exosomes in asthma: Underappreciated contributors to the pathogenesis and novel therapeutic tools. Immun Inflamm Dis 2024; 12:e1325. [PMID: 38934401 PMCID: PMC11209551 DOI: 10.1002/iid3.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools. METHODS A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma. The retrieved articles were analyzed to extract relevant information on the role of exosomes in maintaining lung microenvironment homeostasis, regulating inflammatory responses, and their diagnostic and therapeutic potential for asthma. RESULTS Exosomes secreted by various cell types, have emerged as crucial mediators of intercellular communication in healthy and diseased conditions. Evidence suggest that exosomes play a significant role in maintaining lung microenvironment homeostasis and contribute to asthma pathogenesis by regulating inflammatory responses. Differential exosomal content between healthy individuals and asthmatics holds promise for the development of novel asthma biomarkers. Furthermore, exosomes secreted by immune and nonimmune cells, as well as those detected in biofluids, demonstrate potential in promoting or regulating immune responses, making them attractive candidates for designing new treatment strategies for inflammatory conditions such as asthma. CONCLUSION Exosomes, with their ability to modulate immune responses and deliver therapeutic cargo, offer potential as targeted therapeutic tools in asthma management. Further research and clinical trials are required to fully understand the mechanisms underlying exosome-mediated effects and translate these findings into effective diagnostic and therapeutic strategies for asthma patients.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research CenterShiraz University of Medical SciencesShirazIran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | | - Amirhossein Mazare
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasim Kheshtchin
- Allergy Research CenterShiraz University of Medical SciencesShirazIran
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
8
|
Wang X, Mijiti W, Jia Q, Yi Z, Ma J, Zhou Z, Xie Z. Exploration of altered miRNA expression and function in MSC-derived extracellular vesicles in response to hydatid antigen stimulation. Front Microbiol 2024; 15:1381012. [PMID: 38601938 PMCID: PMC11004373 DOI: 10.3389/fmicb.2024.1381012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hydatid disease is caused by Echinococcus parasites and can affect various tissues and organs in the body. The disease is characterized by the presence of hydatid cysts, which contain specific antigens that interact with the host's immune system. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can regulate immunity through the secretion of extracellular vesicles (EVs) containing microRNAs (miRNAs). Methods In this study, hydatid antigens were isolated from sheep livers and mice peritoneal cavities. MSCs derived from mouse bone marrow were treated with different hydatid antigens, and EVs were isolated and characterized from the conditioned medium of MSCs. Small RNA library construction, miRNA target prediction, and differential expression analysis were conducted to identify differentially expressed miRNAs. Functional enrichment and network construction were performed to explore the biological functions of the target genes. Real-time PCR and Western blotting were used for miRNA and gene expression verification, while ELISA assays quantified TNF, IL-1, IL-6, IL-4, and IL-10 levels in cell supernatants. Results The study successfully isolated hydatid antigens and characterized MSC-derived EVs, demonstrating the impact of antigen concentration on MSC viability. Key differentially expressed miRNAs, such as miR-146a and miR-9-5p, were identified, with functional analyses revealing significant pathways like Endocytosis and MAPK signaling associated with these miRNAs' target genes. The miRNA-HUB gene regulatory network identified crucial miRNAs and HUB genes, such as Traf1 and Tnf, indicating roles in immune modulation and osteogenic differentiation. Protein-protein interaction (PPI) network analysis highlighted central HUB genes like Akt1 and Bcl2. ALP activity assays confirmed the influence of antigens on osteogenic differentiation, with reduced ALP activity observed. Expression analysis validated altered miRNA and chemokine expression post-antigen stimulation, with ELISA analysis showing a significant reduction in CXCL1 expression in response to antigen exposure. Conclusion This study provides insights into the role of MSC-derived EVs in regulating parasite immunity. The findings suggest that hydatid antigens can modulate the expression of miRNAs in MSC-derived EVs, leading to changes in chemokine expression and osteogenic capacity. These findings contribute to a better understanding of the immunomodulatory mechanisms involved in hydatid disease and provide potential therapeutic targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Ziyu Zhou
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|