1
|
Li C, Chen X, Zha W, Fang S, Shen J, Li L, Jiang H, Tian P. Impact of gut microbiota in chronic kidney disease: natural polyphenols as beneficial regulators. Ren Fail 2025; 47:2506810. [PMID: 40441674 PMCID: PMC12123969 DOI: 10.1080/0886022x.2025.2506810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/04/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) poses a severe health risk with high morbidity and mortality, profoundly affecting patient quality of life and survival. Despite advancements in research, the pathophysiology of CKD remains incompletely understood. Growing evidence links CKD with shifts in gut microbiota function and composition. Natural compounds, particularly polyphenols, have shown promise in CKD treatment due to their antioxidant and anti-inflammatory properties and their ability to modulate gut microbiota. This review discusses recent progress in uncovering the connections between gut microbiota and CKD, including microbiota changes across different kidney diseases. We also examine metabolite alterations,such as trimethylamine-N-oxide, tryptophan derivatives, branched-chain amino acids, short-chain fatty acids, and bile acids,which contribute to CKD progression. Further, we outline the mechanisms through which polyphenols exert therapeutic effects on CKD, focusing on signaling pathways like nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), phosphatidylin-ositol-3-kinase (PI3K)/protein kinase B (Akt), and toll like receptors (TLR), as well as their impact on gut microbiota. Lastly, we consider how dietary polyphenols could be harnessed as bioactive drugs to slow CKD progression. Future research should prioritize multi-omics approaches to identify patients who would benefit from polyphenolic interventions, enabling personalized treatment strategies to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Department of Nephrology, Jiujiang University affiliated Hospital, Jiu’jiang, Jiang’xi, China
| | - Xulong Chen
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Weiwei Zha
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Sitian Fang
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nan’chang, Jiangxi, China
| | - Jiangwen Shen
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Lin Li
- School of Clinical Medical, Jiujiang University, Jiu’jiang, Jiang’xi, China
| | - Hongli Jiang
- Department of Blood Purification, Kidney Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
| | - PuXun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaan’xi, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an, Shaan’xi, China
| |
Collapse
|
2
|
Dai M, Wu J, Ji Z, Chen P, Yang C, Luo J, Shan P, Xu M. Construction of a metabolic-immune model for predicting the risk of diabetic nephropathy and study of gut microbiota. J Diabetes Investig 2025; 16:863-873. [PMID: 40029758 PMCID: PMC12057383 DOI: 10.1111/jdi.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 05/08/2025] Open
Abstract
AIMS This study conducts a comprehensive analysis of the relative impact of risk factors for diabetic nephropathy (DN) during disease progression, with a particular emphasis on the role of gut microbiota. We developed multiple predictive models trying to enhance the early identification of high-risk patients in clinical practice. MATERIALS AND METHODS We collected data from type 2 diabetes mellitus patients, categorizing them by renal function for comparison. Logistic regression identified risk factors for DN, and we developed nomogram and random forest risk prediction models. Finally, we analyzed the correlations among these factors. RESULTS Compared to patients with diabetes alone, those with DN have a longer disease duration, characterized by abdominal obesity, hypertension, chronic inflammation, activation of the complement system, and declining renal function, along with a significant reduction in Bifidobacterium and Enterobacterium. Patients with macroalbuminuria exhibit a higher male prevalence, as well as elevated blood pressure and lipid levels, and poorer renal function. Increased waist-to-hip ratio, systolic blood pressure, urea, neutrophil-to-lymphocyte ratio, and complement C3, along with decreased Enterobacterium and albumin, have been identified as significant risk factors for DN. The nomogram model developed based on these findings demonstrates good predictive capacity. And the establishment of the random forest model further underscores the importance of the aforementioned indicators. Additionally, significant correlations were observed among obesity, inflammation, blood pressure, lipid levels, and gut microbiota. CONCLUSIONS Dysbiosis, metabolic disorders, and chronic inflammation play key roles in the progression of DN and may serve as new targets for future prevention and treatment strategies.
Collapse
Affiliation(s)
- Mengting Dai
- Zhejiang University of MedicineHangzhouZhejiangChina
| | - Jianbo Wu
- Department of Endocrinology and Metabolic DiseaseShulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical CollegeHangzhouZhejiangChina
| | - Zhaoyang Ji
- Department of General Medicine, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer HospitalChinese Academy of SciencesHangzhouZhejiangChina
| | - Ping Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang ProvinceShulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical CollegeHangzhouZhejiangChina
| | - Chengchen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
| | - Jialu Luo
- Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Pengfei Shan
- Department of Endocrinology and Metabolic Disease, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Mingzhi Xu
- Department of General Medicine, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer HospitalChinese Academy of SciencesHangzhouZhejiangChina
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang ProvinceShulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
3
|
Yu Y, Yang X, Deng J, Yin Y, Wu Y, Yu R. Association of the gut microbiome with diabetic nephropathy and the mediated effect of metabolites: friend or enemy? Int Urol Nephrol 2025:10.1007/s11255-025-04519-w. [PMID: 40257664 DOI: 10.1007/s11255-025-04519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE The effects of gut microbiome and its metabolites on diabetic nephropathy (DN) have been inadequately elucidated. The aim of this study is to assess the causal effect of gut microbiome on DN and the mediated effect of metabolites by a two-step Mendelian randomization (MR). METHODS Datasets of gut microbiome, metabolites, and DN were acquired in genome-wide association studies and screened for single nucleotide polymorphisms according to the underlying assumptions of MR. Subsequently, inverse variance weighted was used as the primary method for MR analysis to assess the causal effect of gut microbiome on DN and the mediated effect of metabolites. Finally, MR-Egger intercept, Cochran's Q test, and leave-one-out sensitivity analysis were used to assess the horizontal pleiotropy, heterogeneity, and robustness of the results, respectively. RESULTS The MR analysis demonstrated that Parabacteroides merdae increased the genetic susceptibility to DN by reducing acetylcarnitine (C2) to propionylcarnitine (C3) ratio (mediated proportion 8.95%, mediated effect 0.024) and alpha-ketobutyrate to 3-methyl-2-oxovalerate ratio (mediated proportion 19.90%, mediated effect 0.053). MR Egger showed that these results lack horizontal pleiotropy (p ≥ 0.05). Cochran's Q and sensitivity analysis suggested these results had no heterogeneity (p ≥ 0.05) and were robust. CONCLUSION Our findings revealed the pathway by which Parabacteroides merdae increased the genetic susceptibility to DN by regulating acetylcarnitine (C2) to propionylcarnitine (C3) ratio and alpha-ketobutyrate to 3-methyl-2-oxovalerate ratio. It provides new genetic insights for understanding the pathogenesis of DN and related drug research.
Collapse
Affiliation(s)
- Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Juan Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongjun Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
4
|
Li N, Wang Y, Zhang H, Ma L, Huang X, Qiao Y, Li H, Zhao H, Li P. Urobiome of patients with diabetic kidney disease in different stages is revealed by 2bRAD-M. J Transl Med 2025; 23:414. [PMID: 40211272 PMCID: PMC11983741 DOI: 10.1186/s12967-025-06405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Knowledge of the urinary microbiome (urobiome) in diabetic kidney disease (DKD) remains limited. The most commonly used 16S rRNA sequencing technique can only provide bacterial identification at the genus level. As a novel technique, 2bRAD sequencing for microbiome (2bRAD-M) can be used to identify the low-biomass microbiome at the species level. In this study, we used 2bRAD-M to compare the urobiome composition of patients with DKD at different stages with healthy individuals and those with type 2 diabetes mellitus (T2DM), with the expectation that we would find discriminative species correlated with DKD. METHOD Healthy controls, patients with DKD with microalbuminuria (DKD1 group) or macroalbuminuria (DKD2 group), and patients with T2DM were recruited (n = 20 for each group). The first-morning urine was collected for 2bRAD-M testing. The albumin-to-creatinine ratio (ACR) was also measured with urine samples. Serum samples were collected for detecting clinical indicators. The microbial diversity and composition based on abundance were calculated. Differential bacteria for different groups were identified. Besides, the correlation between discriminative bacteria and clinical indices was also analyzed. RESULTS Urobiome diversity was significantly reduced in the DKD groups. In the DKD1 group, was the dominant genus, followed by Pseudomonas_E, whereas in the DKD2 group, Pseudomonas_E became the dominant genus and Escherichia was notably reduced. Both Bifidobacterium and Streptococcus, which were the top genera in the control group, were substantially decreased in the DKD groups. The discriminative species for DKD1 included Escherichia coli and Acinetobacter johnsonii, while for DKD2, Pseudomonas_E oleovorans, Enterococcus faecalis, and Morganella morganii were identified. Pseudomonas_E, Enterococcus and Morganella showed a strong correlation with renal function indicators and urinary protein levels. CONCLUSION The urobiome diversity and composition in patients with DKD were markedly different from those in healthy individuals and T2DM patients. These findings provide valuable insights into the onset and progression of DKD, driven by changes in the urinary bacterial community structure.
Collapse
Affiliation(s)
- Nan Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ying Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xinhui Huang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yuhang Qiao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Han Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
5
|
Pereira IM, Pereira M, Lopes JA, Gameiro J. The gut microbiome as a potential therapeutic target in IgA nephropathy. Nephrol Dial Transplant 2025; 40:641-650. [PMID: 39663206 DOI: 10.1093/ndt/gfae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 12/13/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis and a leading cause of kidney failure, with limited treatment options available. The pathophysiology of IgAN remains unclear; however, recent studies suggest that genetic, epigenetic and environmental factors play significant roles. There is also strong evidence linking the gut microbiome to the development of IgAN. In this review, we will examine the relationship between the microbiome and the pathogenesis of IgAN, as well as its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Inês Miguel Pereira
- Clínica Universitária de Nefrologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Marta Pereira
- Serviço de Nefrologia e Transplantação Renal, ULS Santa Maria, Lisboa, Portugal
| | - José António Lopes
- Clínica Universitária de Nefrologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Serviço de Nefrologia e Transplantação Renal, ULS Santa Maria, Lisboa, Portugal
| | - Joana Gameiro
- Clínica Universitária de Nefrologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Serviço de Nefrologia e Transplantação Renal, ULS Santa Maria, Lisboa, Portugal
| |
Collapse
|
6
|
Wen X, Xu G. Gut microbiota may mediate the causality of statins on diabetic nephropathy: a mediation Mendelian randomization study. Int Urol Nephrol 2025; 57:1337-1348. [PMID: 39656409 DOI: 10.1007/s11255-024-04321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/29/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Increasing evidence indicates that statins may increase the risk of developing diabetic nephropathy (DN). As the gut-kidney axis concept gains traction, it remains unclear whether statins contribute to the onset and progression of DN by modulating gut microbiota. OBJECTIVE To investigate the association between statins and DN and the proportion of this association mediated through gut microbiota. METHOD This study utilized a two-sample Mendelian randomization (MR) approach and a cross-sectional observational design to investigate the causal relationships among statins, 473 gut microbiota, and DN. Furthermore, mediation MR analysis was employed to explore the potential mediating effects of gut microbiota in the statins-DN relationship. RESULTS HMGCR inhibitors were causally linked to the increased incidence of DN (odds ratio [OR]: 0.732, 95% confidence interval [CI] 0.647, 0.828, PFDR = 0.000004). Supporting results from a cross-sectional study based on the Medical Information Marketplace in Intensive Care (MIMIC-IV) database also indicated this association (OR: 0.74, 95% CI: 0.61, 0.91, P = 0.004). Among the 473 identified gut microbiota species, 13 (PFDR < 0.05) were causally associated with DN. The mediation MR analysis revealed that 10 gut microbiota mediated the relationship between statins and DN, acting as either protective or risk factors (P < 0.05). In addition, HMGCR and related proteins may be involved in lipid metabolism, insulin resistance, and AMPK signaling pathway. CONCLUSION Statins may become a risk factor for DN by increasing or decreasing the abundance of specific gut microbiota. These specific gut bacteria have the potential to become a new indicator for guiding the clinical use of statins in diabetic patients.
Collapse
Affiliation(s)
- Xiaoli Wen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
7
|
Ma C, Ju B, Liu J, Wen L, Zhao Y, Yang J, Hu J. Phenylethanol Glycosides from Cistanche tubulosa Modulate the Gut Microbiota and Cecal Metabolites to Ameliorate Diabetic Nephropathy Induced by Streptozotocin Combined with High-Fat Diet in Rats. J Med Food 2025; 28:219-231. [PMID: 39401174 DOI: 10.1089/jmf.2024.k.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Diabetic nephropathy (DN) is a prevalent complication and serious microvascular of diabetes mellitus. After previous studies, we found that phenylethanol glycosides (CPhGs) derived from Cistanche tubulosa (Schenk) Wight exerts antidiabetic and renoprotective effects. However, the effects of CPhGs on DN remain incompletely understood. The study aimed to examine the effects of CPhGs on DN in rats and explore the underlying mechanism involved. A DN rat model was established by streptozotocin (STZ) combined with a high-fat diet. Reagent kits were used to assess the extent to which CPhGs ameliorate hyperglycemia, insulin resistance (IR), renal dysfunction, kidney oxidative stress, and peripheral inflammation. Histology and immunohistochemical staining were used to detect the changes in renal tissue structure and the expression levels of α-smooth muscle actin (α-SMA) and collagen I. Furthermore, we analyzed the cecal contents of DN rats to investigate the effect of CPhGs on gut microbiota by using 16S rRNA sequencing and broad-spectrum metabolite profiling. The results showed that CPhGs demonstrated a range of advantageous outcomes in DN, encompassing the enhancement of kidney function and alleviation of hyperglycemia, IR, renal injury, oxidative stress, and peripheral inflammatory reactions. In addition, CPhGs regulated the abundance of the [Eubacterium]_coprostanoligenes_group, Oscillospiraceae_UCG-005, etc. to modulate the gut microbiota. CPhGs significantly upregulated the content of vitamin B6 and tyrosyl-tryptophan and downregulated histamine, L-methionine, etc. In summary, the therapeutic efficacy of CPhGs on DN rats may be achieved by modulating the gut microbiota and cecal metabolites to restore the metabolic disorders of vitamin B6, histidine, etc.
Collapse
Affiliation(s)
- Chong Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Bowei Ju
- Department of Pharmacy, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiangyun Liu
- College of Pharmacy, Department of Pharmacy, Soochow University, Jiangsu, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
Qin Y, Zhao J, Wang L, Yang X, Wang J, Li S, Chen Y, Guo J, Wang F, Luo K. Decrease in Escherichia-Shigella in the gut microbiota of ESKD patients undergoing maintenance hemodialysis. BMC Nephrol 2025; 26:98. [PMID: 40001029 PMCID: PMC11852509 DOI: 10.1186/s12882-025-03988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Gut dysbiosis is thought to be involved in the pathogenesis and progression of chronic kidney disease and end-stage kidney disease (ESKD). However, differences in the composition and function of gut microbiota in hemodialysis patients are not consistently concluded. METHODS A total of 20 patients receiving maintenance hemodialysis (MHD) treatment at the Blood Purification Center of Bethune International Peace Hospital from March 2021 to December 2022 were included based on the inclusion criteria. Additionally, 20 healthy volunteers matched for age, gender, and body mass index were recruited from the Health Examination Center as the healthy control (HC) group. The structure of the gut microbiota community in the study subjects was analyzed using second-generation high-throughput sequencing technology based on 16S rRNA and amplicon sequence variants (ASV) analysis. RESULTS There were significant differences in gut microbial communities between the two groups. At the genus level, significant differences were found in 19 genera. Among them, Escherichia-Shigella, Lachnospira, Parasutterella, [Ruminococcus]-torques-group, Butyricicoccus, and Streptococcus were significantly decreased, while Phascolarctobacterium, Ruminococcaceae-UBA1819, Erysipelotrichaceae-UCG-003, Flavonifractor, and Erysipelatoclostridium were significantly increased in MHD patients. In particular, the abnormal decrease in the abundance of p-Proteobacteria.c-Gammaproteobacteria.o-Enterobacterales.f-Enterobacteriaceae.g-Escherichia-Shigella might be a significant characteristic of gut microbiota in MHD patients. CONCLUSION The decreased abundance of Escherichia-Shigella is a signature gut microbiota alteration in patients with ESKD undergoing MHD, and Escherichia-Shigella may represent a key bacterial group warranting exploration in the field of hemodialysis. The dysbiosis of gut microbiota holds promise as a therapeutic target and biomarker for the diagnosis and treatment of MHD.
Collapse
Affiliation(s)
- Yunlong Qin
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lihui Wang
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Xinjun Yang
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Jinghua Wang
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Shaojian Li
- Department of Nutrition, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yunshuang Chen
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Jiaming Guo
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Fang Wang
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China
| | - Kaifa Luo
- Department of Nephrology, Bethune International Peace Hospital, No.398 Zhongshan West Road, Shijiazhuang, Hebei, 050051, China.
| |
Collapse
|
9
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
10
|
Song X, Cui J, Li S, Huang B. Causal Relationships Between Gut Microbiota, Metabolites, and Diabetic Nephropathy: Insights from a Two-Sample Mendelian Randomization Analysis. Int J Nephrol Renovasc Dis 2024; 17:319-332. [PMID: 39679125 PMCID: PMC11645948 DOI: 10.2147/ijnrd.s489074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
Background Previous studies have established a correlation between gut microbiota, metabolites, and diabetic nephropathy (DN). However, the inherent limitations of observational studies, including reverse causality and confounding factors, made this relationship uncertain. Methods In this study, we compiled summary statistics from a genome-wide association study (GWAS) conducted on gut microbiota, metabolites, and DN. We employed a two-sample Mendelian randomization (MR) approach, utilizing inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode methods. Results We detected the protective nature of genetically predicted representatives from the family Bacteroidaceae (OR: 0.716, 95% CI: 0.516-0.995, p = 0.046), family Victivallaceae (OR: 0.871, 95% CI: 0.772-0.982, p = 0.026), genus Bacteroides (OR: 0.716, 95% CI: 0.516-0.995, p = 0.046), genus Coprococcus 2 (OR: 0.745, 95% CI: 0.576-0.963, p = 0.025), and genus Lactococcus (OR: 0.851, 95% CI: 0.730-0.992, p = 0.039) against the development of DN. Conversely, we identified a positive correlation between the incidence of DN and entities, such as Phylum Bacteroidetes (OR: 1.427, 95% CI: 1.085-1.875, p = 0.011), class Bacteroidia (OR: 1.304, 95% CI: 1.036-1.641,p = 0.024), order Bacteroidales (OR: 1.304, 95% CI: 1.035-1.641, p = 0.028), genus Catenibacterium (OR: 1.312, 95% CI: 1.079-1.594, p = 0.006), genus Lachnoclostridium (OR: 1.434, 95% CI: 1.129-1.821, p = 0.003), and genus Parasutterella (OR: 1.270, 95% CI: 1.070-1.510, p = 0.006). In our analysis, none of the gut metabolites demonstrated a causal relationship with DN. Conclusion Our results substantiated the potential causal association between specific gut microbiota and DN. Therefore, our study offers novel insight into the mechanisms underlying DN. This finding provides a theoretical foundation for the future development of targeted strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Xixi Song
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Endocrinology and Metabolism, Baoding No.1 Central Hospital, Baoding, People’s Republic of China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Shiwei Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Bo Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
11
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Zhang Y, Zhao L, Jia Y, Zhang X, Han Y, Lu P, Yuan H. Genetic Evidence for the Causal Relationship Between Gut Microbiota and Diabetic Kidney Disease: A Bidirectional, Two-Sample Mendelian Randomisation Study. J Diabetes Res 2024; 2024:4545595. [PMID: 39479291 PMCID: PMC11524706 DOI: 10.1155/2024/4545595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Aims: According to the gut-kidney axis theory, gut microbiota (GM) has bidirectional crosstalk with the development of diabetic kidney disease (DKD). However, empirical results have been inconsistent, and the causal associations remain unclear. This study was aimed at exploring the causal relationship between GM and DKD as well as the glomerular filtration rate (GFR) and urinary albumin-to-creatinine ratio (UACR). Materials and Methods: Two-sample Mendelian randomisation (MR) analysis was performed with inverse-variance weighting as the primary method, together with four additional modes (MR-Egger regression, simple mode, weighted mode, and weighted median). We utilised summary-level genome-wide association study statistics from public databases for this MR analysis. Genetic associations with DKD were downloaded from the IEU Open GWAS project or CKDGen consortium, and associations with GM (196 taxa from five levels) were downloaded from the MiBioGen repository. Results: In forward MR analysis, we identified 13 taxa associated with DKD, most of which were duplicated in Type 2 diabetes with renal complications but not in Type 1 diabetes. We observed a causal association between genetic signature contributing to the relative abundance of Erysipelotrichaceae UCG003 and that for both DKD and GFR. Similarly, host genetic signature defining the abundance of Ruminococcaceae UCG014 was found to be simultaneously associated with DKD and UACR. In reverse MR analysis, the abundance of 14 other GM taxa was affected by DKD, including the phylum Proteobacteria, which remained significant after false discovery rate correction. Sensitivity analyses revealed no evidence of outliers, heterogeneity, or horizontal pleiotropy. Conclusion: Our findings provide compelling causal genetic evidence for the bidirectional crosstalk between specific GM taxa and DKD development, contributing valuable insights for a comprehensive understanding of the pathological mechanisms of DKD and highlighting the possibility of prevention and management of DKD by targeting GM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Lingyun Zhao
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifan Jia
- Department of Endocrinology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueying Han
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Ping Lu
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University & People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Han S, Chen Y, Lu Y, Jia M, Xu Y, Wang Y. Association between gut microbiota and diabetic nephropathy: a two-sample mendelian randomization study. BMC Endocr Disord 2024; 24:214. [PMID: 39390505 PMCID: PMC11468553 DOI: 10.1186/s12902-024-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Observational studies have demonstrated the alterations of gut microbiota composition in diabetic nephropathy (DN), however, the correlation between gut microbiota and DN remains unclear. METHODS A two-sample Mendelian randomization (MR) analysis was designed to estimate the association between gut microbiota and DN. The summary statistics of gut microbiota from phylum level to genus level were obtained from a large-scale, genome-wide association study involving 18,340 individuals, and the data at the species level was derived from the study of TwinsUK Registry, including 1126 twin pairs. The summary statistics of DN were originated from the latest release data of FinnGen (R7, 299623 participants). The MR estimation was calculated using inverse variance weighted, weighted median, MR-Egger regression, and MR-PRESSO. Heterogeneity was assessed using Cochrane's Q test. RESULTS Inverse variance weighted results indicated that the order Bacteroidetes and its corresponding class and phylum [odds ratio (OR), 1.58; 95% confidence interval (CI), 1.15-2.17], the family Verrucomicrobiaceae and its corresponding class and order (OR, 1.46; 95% CI, 1.14-1.87), the genera Akkermansia (OR, 1.46; 95% CI, 1.14-1.87) and Catenibacterium (OR, 1.33; 95% CI, 1.07-1.66) might be associated with a higher risk of DN; whereas the genera Coprococcus2 (OR, 0.68; 95% CI, 0.51-0.91) and Eubacterium_coprostanoligenes_group (OR, 0.69; 95% CI, 0.52-0.92) might play protective roles in DN. CONCLUSIONS This MR study suggested that several gut bacteria were potentially associated with DN, further studies are required to validate these findings.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yinqing Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Meng Jia
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
14
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
15
|
Xu J, Wang N, Yang L, Zhong J, Chen M. Intestinal flora and bile acid interactions impact the progression of diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1441415. [PMID: 39371929 PMCID: PMC11449830 DOI: 10.3389/fendo.2024.1441415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, with the rapid development of omics technologies, researchers have shown that interactions between the intestinal flora and bile acids are closely related to the progression of diabetic kidney disease (DKD). By regulating bile acid metabolism and receptor expression, the intestinal flora affects host metabolism, impacts the immune system, and exacerbates kidney injury in DKD patients. To explore interactions among the gut flora, bile acids and DKD, as well as the related mechanisms, in depth, in this paper, we review the existing literature on correlations among the gut flora, bile acids and DKD. This review also summarizes the efficacy of bile acids and their receptors as well as traditional Chinese medicines in the treatment of DKD and highlights the unique advantages of bile acid receptors in DKD treatment. This paper is expected to reveal a new and important potential strategy for the clinical treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- Department of Nephrology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Jia G, Lastra G, Bostick BP, LahamKaram N, Laakkonen JP, Ylä-Herttuala S, Whaley-Connell A. The mineralocorticoid receptor in diabetic kidney disease. Am J Physiol Renal Physiol 2024; 327:F519-F531. [PMID: 39024357 PMCID: PMC11460335 DOI: 10.1152/ajprenal.00135.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus is one of the leading causes of chronic kidney disease and its progression to end-stage kidney disease (ESKD). Diabetic kidney disease (DKD) is characterized by glomerular hypertrophy, hyperfiltration, inflammation, and the onset of albuminuria, together with a progressive reduction in glomerular filtration rate. This progression is further accompanied by tubulointerstitial inflammation and fibrosis. Factors such as genetic predisposition, epigenetic modifications, metabolic derangements, hemodynamic alterations, inflammation, and inappropriate renin-angiotensin-aldosterone system (RAAS) activity contribute to the onset and progression of DKD. In this context, decades of work have focused on glycemic and blood pressure reduction strategies, especially targeting the RAAS to slow disease progression. Although much of the work has focused on targeting angiotensin II, emerging data support that the mineralocorticoid receptor (MR) is integral in the development and progression of DKD. Molecular mechanisms linked to the underlying pathophysiological changes derived from MR activation include vascular endothelial and epithelial cell responses to oxidative stress and inflammation. These responses lead to alterations in the microcirculatory environment, the abnormal release of extracellular vesicles, gut dysbiosis, epithelial-mesenchymal transition, and kidney fibrosis. Herein, we present recent experimental and clinical evidence on the MR in DKD onset and progress along with new MR-based strategies for the treatment and prevention of DKD.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, United States
- Research Service, Harry S. Trumand Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Guido Lastra
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, United States
- Research Service, Harry S. Trumand Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Brian P Bostick
- Department of Medicine-Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Nihay LahamKaram
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Adam Whaley-Connell
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, United States
- Research Service, Harry S. Trumand Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Medicine-Nephrology and Hypertension, University of Missouri School of Medicine, Columbia, Missouri, United States
| |
Collapse
|
17
|
Wang L, Liang A, Huang J. Exendin-4-enriched exosomes from hUCMSCs alleviate diabetic nephropathy via gut microbiota and immune modulation. Front Microbiol 2024; 15:1399632. [PMID: 39282564 PMCID: PMC11392743 DOI: 10.3389/fmicb.2024.1399632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) presents a significant therapeutic challenge, compounded by complex pathophysiological mechanisms. Recent studies suggest Exendin-4 (Ex-4) as a potential ameliorative agent for DN, albeit with unclear mechanisms. This research investigates the effects and underlying mechanisms of Ex-4-enriched exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) on DN, focusing on their renoprotective properties and interactions with gut microbiota. Method Exosomes from hUCMSCs (hUCMSCs-Exo) were loaded with Ex-4 via electroporation. A streptozotocin (STZ) -induced DN mouse model was employed to assess the therapeutic impact of these engineered exosomes. The study further explored immune cell dynamics, mainly CD4+ regulatory T (Treg) cells, using bioinformatics, flow cytometry, and the influence of gut microbiota through antibiotic treatment and specific bacterial reintroduction. Results Treatment with hUCMSCs-Exo@Ex-4 significantly improved key DN markers, including blood glucose and proteinuria, alleviating kidney damage. A notable decrease in natural Treg cell infiltration in DN was observed, while Ex-4-loaded exosomes promoted CD4+ Treg cell induction. The therapeutic benefits of hUCMSCs-Exo@Ex-4 were diminished upon CD4+ Treg cell depletion, underscoring their role in this context. Notably, CD4+ Treg cell induction correlated with the presence of Prevotella species, and disruption of gut microbiota adversely affected these cells and the therapeutic efficacy of the treatment. However, the reintroduction of Prevotella strains counteracted these adverse effects. Discussion This study elucidates a novel therapeutic mechanism of Ex-4-loaded hUCMSCs exosomes in DN, highlighting the induction of CD4+ Treg cells mediated by specific gut microbiota components. These findings underscore the potential of leveraging gut microbiota and immune cell interplay in developing effective DN treatments.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical, Beijing, China
| | - Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, China
| |
Collapse
|
18
|
Tang S, Wu G, Liu Y, Xue B, Zhang S, Zhang W, Jia Y, Xie Q, Liang C, Wang L, Heng H, Wei W, Shi X, Hu Y, Yang J, Zhao L, Wang X, Zhao L, Yuan H. Guild-level signature of gut microbiome for diabetic kidney disease. mBio 2024; 15:e0073524. [PMID: 38819146 PMCID: PMC11253615 DOI: 10.1128/mbio.00735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 06/01/2024] Open
Abstract
Current microbiome signatures for chronic diseases such as diabetic kidney disease (DKD) are mainly based on low-resolution taxa such as genus or phyla and are often inconsistent among studies. In microbial ecosystems, bacterial functions are strain specific, and taxonomically different bacteria tend to form co-abundance functional groups called guilds. Here, we identified guild-level signatures for DKD by performing in-depth metagenomic sequencing and conducting genome-centric and guild-based analysis on fecal samples from 116 DKD patients and 91 healthy subjects. Redundancy analysis on 1,543 high-quality metagenome-assembled genomes (HQMAGs) identified 54 HQMAGs that were differentially distributed among the young healthy control group, elderly healthy control group, early-stage DKD patients (EDG), and late-stage DKD patients (LDG). Co-abundance network analysis classified the 54 HQMAGs into two guilds. Compared to guild 2, guild 1 contained more short-chain fatty acid biosynthesis genes and fewer genes encoding uremic toxin indole biosynthesis, antibiotic resistance, and virulence factors. Guild indices, derived from the total abundance of guild members and their diversity, delineated DKD patients from healthy subjects and between different severities of DKD. Age-adjusted partial Spearman correlation analysis showed that the guild indices were correlated with DKD disease progression and with risk indicators of poor prognosis. We further validated that the random forest classification model established with the 54 HQMAGs was also applicable for classifying patients with end-stage renal disease and healthy subjects in an independent data set. Therefore, this genome-level, guild-based microbial analysis strategy may identify DKD patients with different severity at an earlier stage to guide clinical interventions. IMPORTANCE Traditionally, microbiome research has been constrained by the reliance on taxonomic classifications that may not reflect the functional dynamics or the ecological interactions within microbial communities. By transcending these limitations with a genome-centric and guild-based analysis, our study sheds light on the intricate and specific interactions between microbial strains and diabetic kidney disease (DKD). We have unveiled two distinct microbial guilds with opposite influences on host health, which may redefine our understanding of microbial contributions to disease progression. The implications of our findings extend beyond mere association, providing potential pathways for intervention and opening new avenues for patient stratification in clinical settings. This work paves the way for a paradigm shift in microbiome research in DKD and potentially other chronic kidney diseases, from a focus on taxonomy to a more nuanced view of microbial ecology and function that is more closely aligned with clinical outcomes.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences Rutgers University, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
| | - Yalei Liu
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Binghua Xue
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Shihan Zhang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Weiwei Zhang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Yifan Jia
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Qinyuan Xie
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Chenghong Liang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Limin Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Hongyan Heng
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Wei Wei
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Xiaoyang Shi
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Yimeng Hu
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Junpeng Yang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Lingyun Zhao
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Xiaobing Wang
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences Rutgers University, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
19
|
Ye Z, So T, Zhang T, Gao X. Association between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1361440. [PMID: 39027478 PMCID: PMC11254691 DOI: 10.3389/fendo.2024.1361440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background To clarify the causal relationship between gut microbiota and diabetic nephropathy (DN), we employed Mendelian randomization (MR). Despite a strong correlation observed, establishing causality is still unclear. By utilizing MR, we aimed to investigate this relationship further and shed light on the potential causal effect of gut microbiota on DN. Methods Genetic instrumental variables for gut microbiota were obtained from a GWAS with 18340 participants. DN summary statistics (1032 cases, 451248 controls) were sourced from a separate GWAS. The primary analysis used the inverse-variance weighted (IVW) method. Reverse MR analysis was conducted to explore reverse causation. Rigorous sensitivity analyses were performed to ensure the resilience and reliability of the study's findings. Results We found two bacterial traits associated with an increased risk of DN: genus LachnospiraceaeUCG008 (OR: 1.4210; 95% CI: 1.0450, 1.9322; p = 0.0250) and genus Terrisporobacter (OR: 1.9716; 95% CI: 1.2040, 3.2285; p = 0.0070). Additionally, phylum Proteobacteria (OR: 0.4394; 95% CI: 0.2721, 0.7096; p = 0.0008) and genus Dialister (OR: 0.4841; 95% CI: 0.3171, 0.7390; p = 0.0008) were protective against DN. Sensitivity analyses consistently supported these results. In the reverse MR analysis, no statistically significant associations were observed between DN and these four bacterial traits. Conclusions Our analyses confirmed a potential causal relationship between certain gut microbiota taxa and the risk of DN. However, additional studies are required to elucidate the underlying mechanisms through which gut microbiota influences the development of DN.
Collapse
Affiliation(s)
- Zhitao Ye
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tikyeung So
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tianyou Zhang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Gao
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Lu J, Gong X, Zhang C, Yang T, Pei D. A multi-omics approach to investigate characteristics of gut microbiota and metabolites in hypertension and diabetic nephropathy SPF rat models. Front Microbiol 2024; 15:1356176. [PMID: 38741742 PMCID: PMC11089221 DOI: 10.3389/fmicb.2024.1356176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Background Imbalance in intestinal microbiota caused by microbial species and proportions or metabolites derived from microbes are associated with hypertension, as well as diabetic nephropathy. However, the involvement of the intestinal microbiota and metabolites in hypertension and diabetic nephropathy comorbidities (HDN) remains to be elucidated. Methods We investigated the effects of intestinal microbiota on HDN in a rat model and determined the abundance of the intestinal microbiota using 16S rRNA sequencing. Changes in fecal and serum metabolites were analyzed using ultra-high-performance liquid chromatography-mass spectrometry. Results The results showed abundance of Proteobacteria and Verrucomicrobia was substantially higher, whereas that of Bacteroidetes was significant lower in the HDN group than in the sham group. Akkermansia, Bacteroides, Blautia, Turicibacter, Lactobacillus, Romboutsia, and Fusicatenibacter were the most abundant, and Prevotella, Lachnospiraceae_NK4A136_group, and Prevotella_9 were the least abundant in the HDN group. Further analysis with bile acid metabolites in serum showed that Blautia was negatively correlated with taurochenodeoxycholic acid, taurocholic acid, positively correlated with cholic acid and glycocholic acid in serum. Conclusions These findings suggest that the gut microbiota and metabolites in feces and serum substantially differed between the HDN and sham groups. The F/B ratio was higher in the HDN group than in the sham group. Blautia is potentially associated with HDN that correlated with differentially expressed bile acid metabolites, which might regulate the pathogenesis of HDN via the microorganism-gut-metabolite axis.
Collapse
Affiliation(s)
- Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Gong
- Department of Critical Care Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenlu Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongmei Pei
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
He G, Chen J, Hao W, Hu W. Causal effect of gut microbiota and diabetic nephropathy: a Mendelian randomization study. Diabetol Metab Syndr 2024; 16:89. [PMID: 38658966 PMCID: PMC11044463 DOI: 10.1186/s13098-024-01327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The interaction of dysbiosis of gut microbiota (GM) with diabetic nephropathy (DN) drew our attention and a better understanding of GM on DN might provide potential therapeutic approaches. However, the exact causal effect of GM on DN remains unknown. METHODS We applied two-sample Mendelian Randomization (MR) analysis, including inverse variance weighted (IVW), MR-Egger methods, etc., to screen the significant bacterial taxa based on the GWAS data. Sensitivity analysis was conducted to assess the robustness of MR results. To identify the most critical factor on DN, Mendelian randomization-Bayesian model averaging (MR-BMA) method was utilized. Then, whether the reverse causality existed was verified by reverse MR analysis. Finally, transcriptome MR analysis was performed to investigate the possible mechanism of GM on DN. RESULTS At locus-wide significance levels, the results of IVW suggested that order Bacteroidales (odds ratio (OR) = 1.412, 95% confidence interval (CI): 1.025-1.945, P = 0.035), genus Akkermansia (OR = 1.449, 95% CI: 1.120-1.875, P = 0.005), genus Coprococcus 1 (OR = 1.328, 95% CI: 1.066-1.793, P = 0.015), genus Marvinbryantia (OR = 1.353, 95% CI: 1.037-1.777, P = 0.030) and genus Parasutterella (OR = 1.276, 95% CI: 1.022-1.593, P = 0.032) were risk factors for DN. Reversely, genus Eubacterium ventriosum (OR = 0.756, 95% CI: 0.594-0.963, P = 0.023), genus Ruminococcus gauvreauii (OR = 0.663, 95% CI: 0.506-0.870, P = 0.003) and genus Erysipelotrichaceae (UCG003) (OR = 0.801, 95% CI: 0.644-0.997, P = 0.047) were negatively associated with the risk of DN. Among these taxa, genus Ruminococcus gauvreauii played a crucial role in DN. No significant heterogeneity or pleiotropy in the MR result was found. Mapped genes (FDR < 0.05) related to GM had causal effects on DN, while FCGR2B and VNN2 might be potential therapeutic targets. CONCLUSIONS This work provided new evidence for the causal effect of GM on DN occurrence and potential biomarkers for DN. The significant bacterial taxa in our study provided new insights for the 'gut-kidney' axis, as well as unconventional prevention and treatment strategies for DN.
Collapse
Affiliation(s)
- Ganyuan He
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Jiayi Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China
| | - Wenke Hao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China.
| | - Wenxue Hu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Provincial Geriatrics Institute, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Specific Alternation of Gut Microbiota and the Role of Ruminococcus gnavus in the Development of Diabetic Nephropathy. J Microbiol Biotechnol 2024; 34:547-561. [PMID: 38346799 PMCID: PMC11016775 DOI: 10.4014/jmb.2310.10028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 04/17/2024]
Abstract
In this study, we aim to investigate the precise alterations in the gut microbiota during the onset and advancement of diabetic nephropathy (DN) and examine the impact of Ruminococcus gnavus (R. gnavus) on DN. Eight-week-old male KK-Ay mice were administered antibiotic cocktails for a duration of two weeks, followed by oral administration of R. gnavus for an additional eight weeks. Our study revealed significant changes in the gut microbiota during both the initiation and progression of DN. Specifically, we observed a notable increase in the abundance of Clostridia at the class level, higher levels of Lachnospirales and Oscillospirales at the order level, and a marked decrease in Clostridia_UCG-014 in DN group. Additionally, there was a significant increase in the abundance of Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Moreover, oral administration of R. gnavus effectively aggravated kidney pathology in DN mice, accompanied by elevated levels of urea nitrogen (UN), creatinine (Cr), and urine protein. Furthermore, R. gnavus administration resulted in down-regulation of tight junction proteins such as Claudin-1, Occludin, and ZO-1, as well as increased levels of uremic toxins in urine and serum samples. Additionally, our study demonstrated that orally administered R. gnavus up-regulated the expression of inflammatory factors, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) and Interleukin (IL)-6. These changes indicated the involvement of the gut-kidney axis in DN, and R. gnavus may worsen diabetic nephropathy by affecting uremic toxin levels and promoting inflammation in DN.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| |
Collapse
|
23
|
Jin Y, Han C, Yang D, Gao S. Association between gut microbiota and diabetic nephropathy: a mendelian randomization study. Front Microbiol 2024; 15:1309871. [PMID: 38601939 PMCID: PMC11004376 DOI: 10.3389/fmicb.2024.1309871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Background The correlation between diabetic nephropathy (DN) and gut microbiota (GM) has been suggested in numerous animal experiments and cross-sectional studies. However, a causal association between GM and DN has not been ascertained. Methods This research adopted MR analysis to evaluate the causal link between GM and DN derived from data acquired through publicly available genome-wide association studies (GWAS). The study utilized the inverse variance weighted (IVW) approach to assess causal association between GM and DN. Four additional methods including MR-Egger, weighted median, weighted mode, and simple mode were employed to ensure comprehensive analysis and robust results. The Cochran's Q test and the MR-Egger method were conducted to identify heterogeneity and horizontal pleiotropy, respectively. The leave-one-out approach was utilized to evaluate the stability of MR results. Finally, a reverse MR was performed to identify the reverse causal association between GM and DN. Results According to IVW analysis, Class Verrucomicrobiae (p = 0.003), Order Verrucomicrobiales (p = 0.003), Family Verrucomicrobiaceae (p = 0.003), Genus Akkermansia (p = 0.003), Genus Catenibacterium (p = 0.031), Genus Coprococcus 1 (p = 0.022), Genus Eubacterium hallii group (p = 0.018), and Genus Marvinbryantia (p = 0.023) were associated with a higher risk of DN. On the contrary, Class Actinobacteria (p = 0.037), Group Eubacterium ventriosum group (p = 0.030), Group Ruminococcus gauvreauii group (p = 0.048), Order Lactobacillales (p = 0.045), Phylum Proteobacteria (p = 0.017) were associated with a lower risk of DN. The sensitivity analysis did not identify any substantial pleiotropy or heterogeneity in the outcomes. We found causal effects of DN on 11 GM species in the reverse MR analysis. Notably, Phylum Proteobacteria and DN are mutually causalities. Conclusion This study identified the causal association between GM and DN with MR analysis, which may enhance the understanding of the intestinal-renal axis and provide novel potential targets for early non-invasive diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Yongxiu Jin
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Chenxi Han
- Tangshan Maternal and Child Health Hospital, Tangshan, China
| | | | - Shanlin Gao
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Wang Y, He X, Xue M, Yu H, He Q, Jin J. Integrated 16S rRNA sequencing and metabolomic analysis reveals the potential protective mechanism of Germacrone on diabetic nephropathy in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:414-426. [PMID: 38429975 PMCID: PMC10984863 DOI: 10.3724/abbs.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 03/03/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes and the leading cause of end-stage renal disease and death. Germacrone (Ger) possesses anti-inflammatory, antioxidant and anti-DN properties. However, it is unclear whether the improvement in kidney damage caused by Ger in DN mice is related to abnormal compositions and metabolites of the gut microbiota. This study generates a mouse model of DN to explore the potent therapeutic ability and mechanism of Ger in renal function by 16S rRNA sequencing and untargeted fecal metabolomics. Although there is no significant change in microbiota diversity, the structure of the gut microbiota in the DN group is quite different. Serratia_marcescens and Lactobacillus_iners are elevated in the model group but significantly decreased after Ger intervention ( P<0.05). Under the treatment of Ger, no significant differences in the diversity and richness of the gut microbiota are observed. An imbalance in the intestinal flora leads to the dysregulation of metabolites, and non-targeted metabolomics data indicate high expression of stearic acid in the DN group, and oleic acid could serve as a potential marker of the therapeutic role of Ger in the DN model. Overall, Ger improves kidney injury in diabetic mice, in part potentially by reducing the abundance of Serratia_marcescens and Lactobacillus_iners, as well as regulating the associated increase in metabolites such as oleic acid, lithocholic acid and the decrease in stearic acid. Our research expands the understanding of the relationship between the gut microbiota and metabolites in Ger-treated DN. This contributes to the usage of natural products as a therapeutic approach for the treatment of DN via microbiota regulation.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Xinxin He
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Mengjiao Xue
- School of Clinical MedicineHangzhou Medical CollegeHangzhou311399China
| | - Huan Yu
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhou310053China
| | - Qiang He
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Juan Jin
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| |
Collapse
|
25
|
Yan S, Wang H, Feng B, Ye L, Chen A. Causal relationship between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1332757. [PMID: 38533501 PMCID: PMC10964483 DOI: 10.3389/fimmu.2024.1332757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Emerging evidence has provided compelling evidence linking gut microbiota (GM) and diabetic nephropathy (DN) via the "gut-kidney" axis. But the causal relationship between them hasn't been clarified yet. We perform a Two-Sample Mendelian randomization (MR) analysis to reveal the causal connection with GM and the development of DN, type 1 diabetes nephropathy (T1DN), type 2 diabetes nephropathy (T2DN), type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM). Methods We used summary data from MiBioGen on 211 GM taxa in 18340 participants. Generalized MR analysis methods were conducted to estimate their causality on risk of DN, T1DN, T2DN, T1DM and T2DM from FinnGen. To ensure the reliability of the findings, a comprehensive set of sensitivity analyses were conducted to confirm the resilience and consistency of the results. Results It was showed that Class Verrucomicrobiae [odds ratio (OR) =1.5651, 95%CI:1.1810-2.0742,PFDR=0.0018], Order Verrucomicrobiales (OR=1.5651, 95%CI: 1.1810-2.0742, PFDR=0.0018) and Family Verrucomicrobiaceae (OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) had significant risk of DN. Our analysis found significant associations between GM and T2DN, including Class Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763, PFDR=0.0139), Order Verrucomimicrobiae (OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024), Rhodospirillales (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083). The Eubacteriumprotogenes (OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021) exhibited a protection against T1DN. Sensitivity analyses confirmed that there was no significant heterogeneity and pleiotropy. Conclusions At the gene prediction level, we identified the specific GM that is causally linked to DN in both T1DM and T2DM patients. Moreover, we identified distinct microbial changes in T1DN that differed from those seen in T2DN, offering valuable insights into GM signatures associated with subtype of nephropathy.
Collapse
Affiliation(s)
- Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baiyu Feng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lin Ye
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
26
|
Yuan Y, Huang L, Yu L, Yan X, Chen S, Bi C, He J, Zhao Y, Yang L, Ning L, Jin H, Yang R, Li Y. Clinical metabolomics characteristics of diabetic kidney disease: A meta-analysis of 1875 cases with diabetic kidney disease and 4503 controls. Diabetes Metab Res Rev 2024; 40:e3789. [PMID: 38501707 DOI: 10.1002/dmrr.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/20/2024]
Abstract
AIMS Diabetic Kidney Disease (DKD), one of the major complications of diabetes, is also a major cause of end-stage renal disease. Metabolomics can provide a unique metabolic profile of the disease and thus predict or diagnose the development of the disease. Therefore, this study summarises a more comprehensive set of clinical biomarkers related to DKD to identify functional metabolites significantly associated with the development of DKD and reveal their driving mechanisms for DKD. MATERIALS AND METHODS We searched PubMed, Embase, the Cochrane Library and Web of Science databases through October 2022. A meta-analysis was conducted on untargeted or targeted metabolomics research data based on the strategy of standardized mean differences and the process of ratio of means as the effect size, respectively. We compared the changes in metabolite levels between the DKD patients and the controls and explored the source of heterogeneity through subgroup analyses, sensitivity analysis and meta-regression analysis. RESULTS The 34 clinical-based metabolomics studies clarified the differential metabolites between DKD and controls, containing 4503 control subjects and 1875 patients with DKD. The results showed that a total of 60 common differential metabolites were found in both meta-analyses, of which 5 metabolites (p < 0.05) were identified as essential metabolites. Compared with the control group, metabolites glycine, aconitic acid, glycolic acid and uracil decreased significantly in DKD patients; cysteine was significantly higher. This indicates that amino acid metabolism, lipid metabolism and pyrimidine metabolism in DKD patients are disordered. CONCLUSIONS We have identified 5 metabolites and metabolic pathways related to DKD which can serve as biomarkers or targets for disease prevention and drug therapy.
Collapse
Affiliation(s)
- Yu Yuan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liping Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingxu Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenghao Bi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqing Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liu Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Ning
- Department Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hua Jin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Wang Y, Xie Y, Mahara G, Xiong Y, Xiong Y, Zheng Q, Chen J, Zhang W, Zhou H, Li Q. Intestinal microbiota and metabolome perturbations in ischemic and idiopathic dilated cardiomyopathy. J Transl Med 2024; 22:89. [PMID: 38254195 PMCID: PMC10804607 DOI: 10.1186/s12967-023-04605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Various clinical similarities are present in ischemic (ICM) and idiopathic dilated cardiomyopathy (IDCM), leading to ambiguity on some occasions. Previous studies have reported that intestinal microbiota appeared dysbiosis in ICM, whether implicating in the IDCM remains unclear. The aim of this study was to assess the alterations in intestinal microbiota and fecal metabolites in ICM and IDCM. METHODS ICM (n = 20), IDCM (n = 22), and healthy controls (HC, n = 20) were enrolled in this study. Stool samples were collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS Both ICM and IDCM exhibited reduced alpha diversity and altered microbial community structure compared to HC. At the genus level, nine taxa including Blautia, [Ruminococcus]_torques_group, Christensenellaceae_R-7_group, UCG-002, Corynebacterium, Oceanobacillus, Gracilibacillus, Klebsiella and Citrobacter was specific to ICM, whereas one taxa Alistipes uniquely altered in IDCM. Likewise, these changes were accompanied by significant metabolic differences. Further differential analysis displayed that 18 and 14 specific metabolites uniquely changed in ICM and IDCM, respectively. The heatmap was generated to display the association between genera and metabolites. Receiver operating characteristic curve (ROC) analysis confirmed the predictive value of the distinct microbial-metabolite features in disease status. The results showed that microbial (area under curve, AUC = 0.95) and metabolic signatures (AUC = 0.84) were effective in discriminating ICM from HC. Based on the specific microbial and metabolic features, the patients with IDCM could be separated from HC with an AUC of 0.80 and 0.87, respectively. Furthermore, the gut microbial genus (AUC = 0.88) and metabolite model (AUC = 0.89) were comparable in predicting IDCM from ICM. Especially, the combination of fecal microbial-metabolic features improved the ability to differentiate IDCM from ICM with an AUC of 0.96. CONCLUSION Our findings highlighted the alterations of gut microbiota and metabolites in different types of cardiomyopathies, providing insights into the pathophysiological mechanisms of myocardial diseases. Moreover, multi-omics analysis of fecal samples holds promise as a non-invasive tool for distinguishing disease status.
Collapse
Affiliation(s)
- Yusheng Wang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yandan Xie
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Gehendra Mahara
- Clinical Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qifang Zheng
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jianqin Chen
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
28
|
Su X, Chen S, Liu J, Feng Y, Han E, Hao X, Liao M, Cai J, Zhang S, Niu J, He S, Huang S, Lo K, Zeng F. Composition of gut microbiota and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Obes Rev 2024; 25:e13646. [PMID: 37813400 DOI: 10.1111/obr.13646] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 10/11/2023]
Abstract
The present systematic review and meta-analysis aimed to summarize the associations between gut microbiota composition and non-alcoholic fatty liver disease. To compare the differences between individuals with or without NAFLD, the standardized mean difference and 95% confidence interval were computed for each α-diversity index and relative abundance of gut microbes. The β-diversity indices were summarized in a qualitative manner. A total of 54 studies with 8894 participants were included. Overall, patients with NAFLD had moderate reduction in α-diversity indices including Shannon (SMD = -0.36, 95% CI = [-0.53, -0.19], p < 0.001) and Chao 1 (SMD = -0.42, 95% CI = [-0.68, -0.17], p = 0.001), but no significant differences were found for Simpson, observed species, phylogenetic diversity, richness, abundance-based coverage estimator, and evenness (p ranged from 0.081 to 0.953). Over 75% of the included studies reported significant differences in β-diversity. Although there was substantial interstudy heterogeneity, especially for analyses at the phylum, class, and family levels, the majority of the included studies showed alterations in the depletion of anti-inflammatory microbes (i.e., Ruminococcaceae and Coprococcus) and the enrichment of proinflammatory microbes (i.e., Fusobacterium and Escherichia) in patients with NAFLD. Perturbations in gut microbiota were associated with NAFLD, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species.
Collapse
Affiliation(s)
- Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Eerdun Han
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaolei Hao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minqi Liao
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Epidemiology, Neuherberg, PR, Germany
| | - Jun Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shiwen Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianxiang Niu
- General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shihua He
- Department of Infectious Disease, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Shaofen Huang
- Shenzhen Qianhai Shekou Free Zone Hospital, Shenzhen, China
| | - Kenneth Lo
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Huo L, Li H, Zhu M, Liu Y, Ren L, Hu J, Wang X. Enhanced trimethylamine metabolism and gut dysbiosis in type 2 diabetes mellitus with microalbumin. Front Endocrinol (Lausanne) 2023; 14:1257457. [PMID: 38075058 PMCID: PMC10698370 DOI: 10.3389/fendo.2023.1257457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Background Abnormal gut microbiota and blood trimethylamine-N-oxide (TMAO) metabolome have been reported in patients with type 2 diabetes mellitus (T2DM) and advanced diabetic nephropathy. This study aimed to investigate the gut microbiota profiles and a group of targeted urine metabolic characteristics in T2DM patients with or without microalbuminuria, to determine the correlation between the gut microbiota composition, trimethylamine (TMA) metabolism, and the clinical features during progression of diabetic kidney disease (DKD). Methods This study included 26 T2DM patients with microalbuminuria (Micro), 26 T2DM patients with normoalbuminuria (Normo), and 15 healthy controls (HC). Urine and Fecal samples were detected using ultra performance liquid chromatography tandem mass spectrometry and 16S ribosomal DNA gene sequencing, respectively. Results The TMAO/TMA ratio decreased gradually during the HC-Normo-Micro transition. The levels of TMA, choline and betaine were significantly different between the HC group and the T2DM patients belonging to both Normo and Micro groups. At the operational taxonomic unit (OTU) level, the gut microflora diversity was significantly reduced in the Micro groups compared to the HC groups and the Normo groups. Taxonomic analyses revealed significant consumption in the relative abundances of eight bacterial genera and significant enrichment of two bacterial genera during the HC-Normo-Micro transition. Furthermore, the relative abundances of six bacterial genera, namely, Ruminococcus_1, [Eubacterium]_ruminantium_group, Roseburia, Faecalibacterium, Fusicatenibacter and Coprococcus_3 exhibited significant differences, and were associated with elevated urinary albumin creatinine ratio (UACR), TMAO/TMA, TMA and its precursors in the Micro group compared with the other groups. Conclusion The imbalance of gut microbiota has occurred in patients with early-stage DKD, and the consumption of short-chain fatty acid-producing bacteria were associated with the accumulation of TMA and UACR.
Collapse
Affiliation(s)
- Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Hui Li
- Department of Environmental and Occupational Health, Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Ming Zhu
- Department of Nephrology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Yang Liu
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Lingyan Ren
- Department of Nephrology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Jia Hu
- Department of Endocrinology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| | - Xiaoyi Wang
- Department of Nephrology, The First Affiliated Hospital of Huzhou University, The First People’s Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
30
|
Mo Z, Wang J, Meng X, Li A, Li Z, Que W, Wang T, Tarnue KF, Ma X, Liu Y, Yan S, Wu L, Zhang R, Pei J, Wang X. The Dose-Response Effect of Fluoride Exposure on the Gut Microbiome and Its Functional Pathways in Rats. Metabolites 2023; 13:1159. [PMID: 37999254 PMCID: PMC10672837 DOI: 10.3390/metabo13111159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic activities within the gut microbiome are intimately linked to human health and disease, especially within the context of environmental exposure and its potential ramifications. Perturbations within this microbiome, termed "gut microbiome perturbations", have emerged as plausible intermediaries in the onset or exacerbation of diseases following environmental chemical exposures, with fluoride being a compound of particular concern. Despite the well-documented adverse impacts of excessive fluoride on various human physiological systems-ranging from skeletal to neurological-the nuanced dynamics between fluoride exposure, the gut microbiome, and the resulting dose-response relationship remains a scientific enigma. Leveraging the precision of 16S rRNA high-throughput sequencing, this study meticulously examines the ramifications of diverse fluoride concentrations on the gut microbiome's composition and functional capabilities within Wistar rats. Our findings indicate a profound shift in the intestinal microbial composition following fluoride exposure, marked by a dose-dependent modulation in the abundance of key genera, including Pelagibacterium, Bilophila, Turicibacter, and Roseburia. Moreover, discernible alterations were observed in critical functional and metabolic pathways of the microbiome, such as D-lyxose ketol-isomerase and DNA polymerase III subunit gamma/tau, underscoring the broad-reaching implications of fluoride exposure. Intriguingly, correlation analyses elucidated strong associations between specific bacterial co-abundance groups (CAGs) and these shifted metabolic pathways. In essence, fluoride exposure not only perturbs the compositional equilibrium of the gut microbiota but also instigates profound shifts in its metabolic landscape. These intricate alterations may provide a mechanistic foundation for understanding fluoride's potential toxicological effects mediated via gut microbiome modulation.
Collapse
Affiliation(s)
- Zhe Mo
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Zhe Li
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Wenjun Que
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Tuo Wang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Korto Fatti Tarnue
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xu Ma
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Ying Liu
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Shirui Yan
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Lei Wu
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Rui Zhang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
31
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
32
|
Pantazi AC, Kassim MAK, Nori W, Tuta LA, Mihai CM, Chisnoiu T, Balasa AL, Mihai L, Lupu A, Frecus CE, Lupu VV, Chirila SI, Badescu AG, Hangan LT, Cambrea SC. Clinical Perspectives of Gut Microbiota in Patients with Chronic Kidney Disease and End-Stage Kidney Disease: Where Do We Stand? Biomedicines 2023; 11:2480. [PMID: 37760920 PMCID: PMC10525496 DOI: 10.3390/biomedicines11092480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) plays a vital role in human health, with increasing evidence linking its imbalance to chronic kidney disease and end-stage kidney disease. Although the exact methods underlying kidney-GM crosstalk are not fully understood, interventions targeting GM were made and lay in three aspects: diagnostic, predictive, and therapeutic interventions. While these interventions show promising results in reducing uremic toxins and inflammation, challenges remain in the form of patient-specific GM variability, potential side effects, and safety concerns. Our understanding of GMs role in kidney disease is still evolving, necessitating further research to elucidate the causal relationship and mechanistic interactions. Personalized interventions focusing on specific GM signatures could enhance patient outcomes. However, comprehensive clinical trials are needed to validate these approaches' safety, efficacy, and feasibility.
Collapse
Affiliation(s)
| | | | - Wassan Nori
- College of Medicine, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Liliana Ana Tuta
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Corina Elena Frecus
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Sergiu Ioachim Chirila
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | | | - Laurentiu-Tony Hangan
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | - Simona Claudia Cambrea
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| |
Collapse
|
33
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
34
|
Wang F, Li N, Ni S, Min Y, Wei K, Sun H, Fu Y, Liu Y, Lv D. The Effects of Specific Gut Microbiota and Metabolites on IgA Nephropathy-Based on Mendelian Randomization and Clinical Validation. Nutrients 2023; 15:nu15102407. [PMID: 37242290 DOI: 10.3390/nu15102407] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Although recent research suggests that alterations in gut microbiota and metabolites play a critical role in the pathophysiology of immunoglobulin A nephropathy (IgAN), the causal relationship between specific intestinal flora and metabolites and the risk of IgAN remains unclear. METHOD This study employed Mendelian randomization (MR) to investigate the causal association between gut microbiota and IgAN. To explore potential associations between gut microbiota and various outcomes, four MR methods were applied: inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode. If the results of the four methods are inconclusive, we prefer the IVW as the primary outcome. Additionally, MR-Egger, MR-PRESSO-Global, and Cochrane's Q tests were used to detect heterogeneity and pleiotropy. The stability of MR findings was assessed using the leave-one-out approach, and the strength of the causal relationship between exposure and outcome was tested using Bonferroni correction. Additional clinical samples were utilized to validate the results of Mendelian randomization, and the outcomes were visualized through an ROC curve, confusion matrix, and correlation analysis. RESULT This study examined a total of 15 metabolites and 211 microorganisms. Among them, eight bacteria and one metabolite were found to be associated with the risk of IgAN (p < 0.05). The Bonferroni-corrected test reveals that only Class. Actinobacteria (OR: 1.20, 95% CI: 1.07-1.36, p = 0.0029) have a significant causal relationship with IgAN. According to Cochrane's Q test, there is no substantial heterogeneity across different single-nucleotide polymorphisms (p > 0.05). Furthermore, MR-Egger and MR-PRESSO-Global tests (p > 0.05) showed no evidence of pleiotropy. No reverse causal association was found between the risk of IgAN and microbiota or metabolites (p > 0.05). Clinical specimens demonstrated the effectiveness and accuracy of Actinobacteria in distinguishing IgAN patients from those with other glomerular diseases (AUC = 0.9, 95% CI: 0.78-1.00). Additionally, our correlation analysis revealed a potential association between Actinobacteria abundance and increased albuminuria (r = 0.85) and poorer prognosis in IgAN patients (p = 0.01). CONCLUSION Through MR analysis, we established a causal link between Actinobacteria and the incidence of IgAN. Moreover, clinical validation using fecal samples indicated that Actinobacteria might be associated with the onset and poorer prognosis of IgAN. This finding could provide valuable biomarkers for early, noninvasive detection of the disease and potential therapeutic targets in IgAN.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Nephrology, Liyang Hospital of Chinese Medicine, Liyang 213300, China
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Ning Li
- Institute of Nephrology, Southeast University School of Medicine, Nanjing 210009, China
| | - Siming Ni
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yu Min
- Department of Biotherapy and National Clinical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kang Wei
- Yangzhou People's Hospital, Yangzhou University, Yangzhou 225000, China
| | - Hongbin Sun
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yuqi Fu
- Institute of Nephrology, Southeast University School of Medicine, Nanjing 210009, China
| | - Yalan Liu
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Dan Lv
- Institute of Nephrology, Liyang Hospital of Chinese Medicine, Liyang 213300, China
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
35
|
Shi R, Tao Y, Tang H, Wu C, Fei J, Ge H, Gu HF, Wu J. Abelmoschus Manihot ameliorates the levels of circulating metabolites in diabetic nephropathy by modulating gut microbiota in non-obese diabetes mice. Microb Biotechnol 2023; 16:813-826. [PMID: 36583468 PMCID: PMC10034626 DOI: 10.1111/1751-7915.14200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Huangkui capsule (HKC), a traditional Chinese medicine, has been used for medication of kidney diseases, including diabetic nephropathy (DN). The current study aimed to evaluate the effects of HKC in the modulation of gut microbiota and the amelioration of metabolite levels by using non-obese diabetes (NOD) mice with DN. The microbiota from three parts of intestines (duodenum, ileum and colon) in NOD mice with and without HKC treatment were analysed using 16S rDNA sequencing techniques. Untargeted metabolomics in plasma of NOD mice were analysed with liquid mass spectrometry. Results showed that HKC administration ameliorated DN in NOD mice and the flora in duodenum were more sensitive to HKC intervention, while the flora in colon had more effects on metabolism. The bacterial genera such as Faecalitalea and Muribaculum significantly increased and negatively correlated with most of the altered metabolites after HKC treatment, while Phyllobacterium, Weissella and Akkermansia showed an opposite trend. The plasma metabolites, mainly including amino acids and fatty acids such as methionine sulfoxide, BCAAs and cis-7-Hexadecenoic acid, exhibited a distinct return to normal after HKC treatment. The current study thereby provides experimental evidence suggesting that HKC may modulate gut microbiota and subsequently ameliorate the metabolite levels in DN.
Collapse
Affiliation(s)
- Ruiya Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yingjun Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Chenhua Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingjin Fei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Harvest F Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Mao ZH, Gao ZX, Liu DW, Liu ZS, Wu P. Gut microbiota and its metabolites - molecular mechanisms and management strategies in diabetic kidney disease. Front Immunol 2023; 14:1124704. [PMID: 36742307 PMCID: PMC9896007 DOI: 10.3389/fimmu.2023.1124704] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus and is also one of the serious risk factors in cardiovascular events, end-stage renal disease, and mortality. DKD is associated with the diversified, compositional, and functional alterations of gut microbiota. The interaction between gut microbiota and host is mainly achieved through metabolites, which are small molecules produced by microbial metabolism from exogenous dietary substrates and endogenous host compounds. The gut microbiota plays a critical role in the pathogenesis of DKD by producing multitudinous metabolites. Nevertheless, detailed mechanisms of gut microbiota and its metabolites involved in the occurrence and development of DKD have not been completely elucidated. This review summarizes the specific classes of gut microbiota-derived metabolites, aims to explore the molecular mechanisms of gut microbiota in DKD pathophysiology and progression, recognizes biomarkers for the screening, diagnosis, and prognosis of DKD, as well as provides novel therapeutic strategies for DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
37
|
Peters BA, Qi Q, Usyk M, Daviglus ML, Cai J, Franceschini N, Lash JP, Gellman MD, Yu B, Boerwinkle E, Knight R, Burk RD, Kaplan RC. Association of the gut microbiome with kidney function and damage in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Gut Microbes 2023; 15:2186685. [PMID: 36882941 PMCID: PMC10012940 DOI: 10.1080/19490976.2023.2186685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The gut microbiome is altered in chronic kidney disease (CKD), potentially contributing to CKD progression and co-morbidities, but population-based studies of the gut microbiome across a wide range of kidney function and damage are lacking. METHODS In the Hispanic Community Health Study/Study of Latinos, gut microbiome was assessed by shotgun sequencing of stool (n = 2,438; 292 with suspected CKD). We examined cross-sectional associations of estimated glomerular filtration rate (eGFR), urinary albumin:creatinine (UAC) ratio, and CKD with gut microbiome features. Kidney trait-related microbiome features were interrogated for correlation with serum metabolites (n = 700), and associations of microbiome-related serum metabolites with kidney trait progression were examined in a prospective analysis (n = 3,635). RESULTS Higher eGFR was associated with overall gut microbiome composition, greater abundance of species from Prevotella, Faecalibacterium, Roseburia, and Eubacterium, and microbial functions related to synthesis of long-chain fatty acids and carbamoyl-phosphate. Higher UAC ratio and CKD were related to lower gut microbiome diversity and altered overall microbiome composition only in participants without diabetes. Microbiome features related to better kidney health were associated with many serum metabolites (e.g., higher indolepropionate, beta-cryptoxanthin; lower imidazole propionate, deoxycholic acids, p-cresol glucuronide). Imidazole propionate, deoxycholic acid metabolites, and p-cresol glucuronide were associated with prospective reductions in eGFR and/or increases in UAC ratio over ~6 y. CONCLUSIONS Kidney function is a significant correlate of the gut microbiome, while the relationship of kidney damage with the gut microbiome depends on diabetes status. Gut microbiome metabolites may contribute to CKD progression.
Collapse
Affiliation(s)
- Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mykhaylo Usyk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - James P. Lash
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
38
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
39
|
Wang P, Guo R, Bai X, Cui W, Zhang Y, Li H, Shang J, Zhao Z. Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice. Front Endocrinol (Lausanne) 2022; 13:1034818. [PMID: 36589853 PMCID: PMC9802116 DOI: 10.3389/fendo.2022.1034818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic kidney disease (DKD), as a serious microvascular complication of diabetes, has limted treatment options. It is reported that the Sacubitril/Valsartan (Sac/Val) can improve kidney function, and the disordered gut microbiota and part of its metabolites are related to the development of DKD. Therefore, we aim to explore whether the effect of Sac/Val on DKD is associated with the gut microbiota and related plasma metabolic profiles. Methods Male C57BL/6J mice were randomly divided into 3 groups: Con group (n = 5), DKD group (n = 6), and Sac/Val group (n = 6) . Sac/Val group was treated with Sac/Val solution. The intervention was given once every 2 days for 6 weeks. We measured the blood glucose and urine protein level of mice at different times. We then collected samples at the end of experiment for the 16s rRNA gene sequencing analysis and the untargeted plasma metabonomic analysis. Results We found that the plasma creatinine concentration of DKD-group mice was significantly higher than that of Con-group mice, whereas it was reduced after the Sac/Val treatment. Compared with DKD mice, Sac/Val treatment could decrease the expression of indicators related to EndMT and renal fibrosis like vimentin, collagen IV and fibronectin in kidney. According to the criteria of LDA ≥ 2.5 and p<0.05, LefSe analysis of gut microbiota identified 13 biomarkers in Con group, and 33 biomarkers in DKD group, mainly including Prevotella, Escherichia_Shigella and Christensenellaceae_R_7_group, etc. For the Sac/Val group, there were 21 biomarkers, such as Bacteroides, Rikenellaceae_RC9_gut_group, Parabacteroides, Lactobacillus, etc. Plasma metabolomics analysis identified a total of 648 metabolites, and 167 important differential metabolites were screened among groups. KEGG pathway of tryptophan metabolism: M and bile secretion: OS had the highest significance of enrichment. Conclusions Sac/Val improves the renal function of DKD mice by inhibiting renal fibrosis. This drug can also regulate gut microbiota in DKD mice.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Mary School, Nanchang, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Hong J, Fu T, Liu W, Du Y, Min C, Lin D. Specific alterations of gut microbiota in diabetic microvascular complications: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1053900. [PMID: 36545341 PMCID: PMC9761769 DOI: 10.3389/fendo.2022.1053900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of gut microbiota in diabetes mellitus (DM) and its complications has been widely accepted. However, the alternation of gut microbiota in diabetic microvascular complications (DC) remains to be determined. METHODS Publications (till August 20th, 2022) on gut microbiota in patients with DC were retrieved from PubMed, Web of Science, Embase and Cochrane. Review Manager 5.3 was performed to estimate the standardized mean difference (SMD) and 95% confidence interval (CI) and calculate alpha diversity indices and the relative abundance of gut microbiota between patients in DC v.s. DM and DC v.s. healthy controls (HC). RESULTS We included 13 studies assessing 329 patients with DC, 232 DM patients without DC, and 241 HC. Compared to DM, patients with DC shared a significantly lower Simpson index (SMD = -0.59, 95% CI [-0.82, -0.36], p < 0.00001), but a higher ACE index (SMD = 0.42, 95% CI[0.11, 0.74], p = 0.009). Compared to HC, DC patients held a lower ACE index (SMD = -0.61, 95% CI[-1.20, -0.02], p = 0.04). The relative abundances of phylum Proteobacteria (SMD = 0.03, 95% CI[0.01, 0.04], p = 0.003, v.s. HC) and genus Klebsiella (SMD = 0.00, 95% CI[0.00, 0.00], p < 0.00001, v.s. HC) were enriched, accompanying with depleted abundances of phylum Firmicutes (SMD = -0.06, 95% CI[-0.11, -0.01], p = 0.02, v.s. HC), genera Bifidobacterium (SMD = -0.01, 95% CI[-0.02,-0.01], p < 0.0001, v.s. DM), Faecalibacterium (SMD = -0.01, 95% CI[-0.02, -0.00], p = 0.009, v.s. DM; SMD = -0.02, 95% CI[-0.02, -0.01], p < 0.00001, v.s. HC) and Lactobacillus (SMD = 0.00, 95% CI[-0.00, -0.00], p < 0.00001, v.s. HC) in DC. CONCLUSIONS Gut microbiota perturbations with the depletion of alpha diversity and certain short-chain fatty acids (SCFAs)-producing bacteria were associated with the pathology of DC. Therefore, gut microbiota might serve as a promising approach for the diagnosis and treatment of DC. Further investigations are required to study the mechanisms by which gut dysbiosis acts on the onset and progression of DC.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Traditional Chinese Medicine Guangdong Provincial Institute of Geriatric, Guangzhou, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Chen Q, Ren D, Liu L, Xu J, Wu Y, Yu H, Liu M, Zhang Y, Wang T. Ginsenoside Compound K Ameliorates Development of Diabetic Kidney Disease through Inhibiting TLR4 Activation Induced by Microbially Produced Imidazole Propionate. Int J Mol Sci 2022; 23:ijms232112863. [PMID: 36361652 PMCID: PMC9656537 DOI: 10.3390/ijms232112863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and devastating complication in diabetic patients, which is recognized as a large and growing problem leading to end-stage kidney disease. As dietary-mediated therapies are gradually becoming more acceptable to patients with DKD, we planned to find active compounds on preventing DKD progression from dietary material. The present paper reports the renoprotective properties and underlying mechanisms of ginsenoside compound K (CK), a major metabolite in serum after oral administration of ginseng. CK supplementation for 16 weeks could improve urine microalbumin, the ratio of urinary albumin/creatinine and renal morphological abnormal changes in db/db mice. In addition, CK supplementation reshaped the gut microbiota by decreasing the contents of Bacteroides and Paraprevotella and increasing the contents of Lactobacillu and Akkermansia at the genus level, as well as reduced histidine-derived microbial metabolite imidazole propionate (IMP) in the serum. We first found that IMP played a significant role in the progression of DKD through activating toll-like receptor 4 (TLR4). We also confirmed CK supplementation can down-regulate IMP-induced protein expression of the TLR4 signaling pathway in vivo and in vitro. This study suggests that dietary CK could offer a better health benefit in the early intervention of DKD. From a nutrition perspective, CK or dietary material containing CK can possibly be developed as new adjuvant therapy products for DKD.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dongwen Ren
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Luokun Liu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jingge Xu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Haiyang Yu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Mengyang Liu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Y.Z.); (T.W.); Tel.: +86-22-59596163 (Y.Z.); +86-22-59596572 (T.W.)
| | - Tao Wang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Y.Z.); (T.W.); Tel.: +86-22-59596163 (Y.Z.); +86-22-59596572 (T.W.)
| |
Collapse
|
42
|
Abstract
Type 2 diabetes mellitus (T2DM), is a chronic metabolic disease, characterized by the presence of hyperglycemia and insulin resistance. The key treatment strategies for T2DM include modification of lifestyle, medications, and continuous glucose monitoring. DM patients often have DM-associated morbidities and comorbidities; however, disorders of musculoskeletal system are often neglected, compared to other major systems in DM patients. Based on sharing similar pathophysiology of DM and osteoporosis, it is supposed that the use of antidiabetic agents (ADAs) may not only provide the lowering glucose level effect and the maintenance of the sugar homeostasis to directly delay the tissue damage secondary to hyperglycemia but also offer the benefits, such as the prevention of developing osteoporosis and fractures. Based on the current review, evidence shows the positive correlation between DM and osteoporosis or fracture, but the effectiveness of using ADA in the prevention of osteoporosis and subsequent reduction of fracture seems to be inconclusive. Although the benefits of ADA on bone health are uncertain, the potential value of "To do one and to get more" therapeutic strategy should be always persuaded. At least, one of the key treatment strategies as an establishment of healthy lifestyle may work, because it improves the status of insulin resistance and subsequently helps DM control, prevents the DM-related micro- and macrovascular injury, and possibly strengthens the general performance of musculoskeletal system. With stronger musculoskeletal system support, the risk of "fall" may be decreased, because it is associated with fracture. Although the ADA available in the market does not satisfy the policy of "To do one and to get more" yet, we are looking forward to seeing the continuously advanced technology of drug development on diabetic control, and hope to see their extra-sugar-lowering effects.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| | - Szu-Ting Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Hsun Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
43
|
Han S, Chen M, Cheng P, Zhang Z, Lu Y, Xu Y, Wang Y. A systematic review and meta-analysis of gut microbiota in diabetic kidney disease: Comparisons with diabetes mellitus, non-diabetic kidney disease, and healthy individuals. Front Endocrinol (Lausanne) 2022; 13:1018093. [PMID: 36339429 PMCID: PMC9633273 DOI: 10.3389/fendo.2022.1018093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gut microbiota has been reported to play an important role in diabetic kidney disease (DKD), however, the alterations of gut bacteria have not been determined. METHODS Studies comparing the differences of gut microbiome between patients with DKD and non-DKD individuals using high-throughput sequencing technology, were systematically searched and reviewed. Outcomes were set as gut bacterial diversity, microbial composition, and correlation with clinical parameters of DKD. Qualitative data were summarized and compared through a funnel R script, and quantitative data were estimated by meta-analysis. RESULTS A total of 15 studies and 1640 participants were included, the comparisons were conducted between DKD, diabetes mellitus (DM), non-diabetic kidney disease (NDKD), and healthy controls. There were no significant differences of α-diversity between DKD and DM, and between DKD and NDKD, however, significant lower microbial richness was found in DKD compared to healthy controls. Different bacterial compositions were found between DKD and non-DKD subjects. The phylum Actinobacteria were found to be enriched in DKD compared to healthy controls. At the genus level, we found the enrichment of Hungatella, Bilophila, and Escherichia in DKD compared to DM, patients with DKD showed lower abundances of Faecalibacterium compared to those with NDKD. The genera Butyricicoccus, Faecalibacterium, and Lachnospira were depleted in DKD compared to healthy controls, whereas Hungatella, Escherichia, and lactobacillus were significantly enriched. The genus Ruminococcus torques group was demonstrated to be inversely correlated with estimated glomerular filtration rate of DKD. CONCLUSIONS Gut bacterial alterations was demonstrated in DKD, characterized by the enrichment of the genera Hungatella and Escherichia, and the depletion of butyrate-producing bacteria, which might be associated with the occurrence and development of DKD. Further studies are still needed to validate these findings, due to substantial heterogeneity. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42022340870.
Collapse
Affiliation(s)
- Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Cheng
- Department of Hemodialysis, Lin’an Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Zeng Zhang
- Department of Endocrine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yanqiu Xu, ; Yi Wang,
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yanqiu Xu, ; Yi Wang,
| |
Collapse
|