1
|
Ma N, Liu P, Li N, Hu Y, Kang L. Exploring the pharmacological mechanisms for alleviating OSA: Adenosine A2A receptor downregulation of the PI3K/Akt/HIF‑1 pathway (Review). Biomed Rep 2025; 22:21. [PMID: 39720297 PMCID: PMC11668141 DOI: 10.3892/br.2024.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is the most common type of sleep apnea, which leads to episodes of intermittent hypoxia due to obstruction of the upper airway. A key feature of OSA is the upregulation and stabilization of hypoxia-inducible factor 1 (HIF-1), a crucial metabolic regulator that facilitates rapid adaptation to changes in oxygen availability. Adenosine A2A receptor (A2AR), a major adenosine receptor, regulates HIF-1 under hypoxic conditions, exerting anti-inflammatory properties and affecting lipid metabolism. The present study explored the roles of A2AR in OSA regulation, specifically focusing on its effects via the PI3K/Akt/HIF-1 pathway. The findings enhance our understanding the pharmacological potential of A2AR in OSA management and suggest future research directions in exploring its clinical applications.
Collapse
Affiliation(s)
- Nini Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Peijie Liu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Ning Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Yushi Hu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Liang Kang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| |
Collapse
|
2
|
Seitkalieva A, Noskova Y, Isaeva M, Guzii A, Makarieva TN, Fedorov S, Balabanova L. In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D. Molecules 2024; 29:5701. [PMID: 39683860 DOI: 10.3390/molecules29235701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The natural 5-azaindoles, marine sponge guitarrin C and D, were observed to exert inhibitory activity against a highly active alkaline phosphatase (ALP) CmAP of the PhoA family from the marine bacterium Cobetia amphilecti, with IC50 values of 8.5 and 110 µM, respectively. The superimposition of CmAP complexes with p-nitrophenyl phosphate (pNPP), a commonly used chromogenic aryl substrate for ALP, and the inhibitory guitarrins C, D, and the non-inhibitory guitarrins A, B, and E revealed that the presence of a carboxyl group at C6 together with a hydroxyl group at C8 is a prerequisite for the inhibitory effect of 5-azaindoles on ALP activity. The 10-fold more active guitarrin C could compete with pNPP for binding sites in the ALP active site due to similarities in size, three-dimensional structure, and the orientation of the COOH group along the phosphate group. However, the inhibition of CmAP and calf intestinal ALP (CIAP) by guitarrin C was observed to occur via a non-competitive mode of action, as evidenced by a twofold decrease in Vmax and an unchanged Km. In contrast, the kinetic model with guitarrin D, with an additional OH group at C7, reflected a mixed type of inhibition, with a decrease in both values. The sensitivity of CIAP to guitarrins C and D was shown to be slightly lower than that of CmAP, with IC50 values of 195 and 230 µM, respectively. Nevertheless, these findings prompted the prediction of complexes of human ALP isoenzymes with guitarrins C and D.
Collapse
Affiliation(s)
- Aleksandra Seitkalieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Yulia Noskova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Alla Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Sergey Fedorov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
3
|
Lan W, Xiao X, Nian J, Wang Z, Zhang X, Wu Y, Zhang D, Chen J, Bao W, Li C, Zhang Y, Zhu A, Zhang F. Senolytics Enhance the Longevity of Caenorhabditis elegans by Altering Betaine Metabolism. J Gerontol A Biol Sci Med Sci 2024; 79:glae221. [PMID: 39434620 DOI: 10.1093/gerona/glae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 10/23/2024] Open
Abstract
Aging triggers physiological changes in organisms that are tightly linked to metabolic changes. Senolytics targeting many fundamental aging processes are currently being developed. However, the host metabolic response to natural senescence and the molecular mechanism underlying the antiaging benefits of senolytics remain poorly understood. In this study, we investigated metabolic changes during natural senescence based on the Caenorhabditis elegans model and pinpointed potential biomarkers linked to the benefits of senolytics. These results suggest that age-dependent metabolic changes during natural aging occur in C elegans. Betaine was identified as a crucial metabolite in the natural aging process. We explored the metabolic effects of aging interventions by administering 3 antiaging drugs-metformin, quercetin, and minocycline-to nematodes. Notably, betaine expression significantly increased under the 3 antiaging drug treatments. Our findings demonstrated that betaine supplementation extends lifespan, primarily through pathways associated with the forkhead box transcription factor (FoxO) signaling pathway, the p38-mitogen-activated protein kinase (MAPK) signaling pathway, autophagy, the longevity regulating pathway, and the target of rapamycin (mTOR) signaling pathway. In addition, autophagy and free radicals are altered in betaine-treated nematodes. Overall, we found that betaine is a critical metabolite during natural aging and that senolytics extend the lifespan of nematodes by increasing betaine levels and promoting autophagy and antioxidant activity. This finding suggests that betaine could be a novel therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Xiaolian Xiao
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - Jingjing Nian
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ziran Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojing Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yajiao Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongcheng Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junkun Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenqiang Bao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chutao Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Balabanova L, Bondarev G, Seitkalieva A, Son O, Tekutyeva L. Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines 2024; 12:2502. [PMID: 39595068 PMCID: PMC11591857 DOI: 10.3390/biomedicines12112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The endogenous ecto-enzyme and exogenously administered alkaline phosphatase (ALP) have been evidenced to significantly attenuate inflammatory conditions, including Toll-like receptor 4 (TLR4)-related signaling and cytokine overexpression, barrier tissue dysfunction and oxidative stress, and metabolic syndrome and insulin resistance, in experimental models of colitis, liver failure, and renal and cardiac ischemia-reperfusion injury. This suggests multiple mechanisms of ALP anti-inflammatory action that remain to be fully elucidated. METHODS Recent studies have contributed to a deeper comprehension of the role played by ALP in immune metabolism. This review outlines the established effects of ALP on lipopolysaccharide (LPS)-induced inflammation, including the neutralization of LPS and the modulation of purinergic signaling. RESULTS The additional mechanisms of anti-inflammatory activity of ALP observed in different pathologies are proposed. CONCLUSIONS The anti-inflammatory pathways of ALP may include a scavenger receptor (CD36)-mediated activation of β-oxidation and oxidative phosphorylation, caveolin-dependent endocytosis, and selective autophagy-dependent degradation.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia;
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Georgii Bondarev
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Aleksandra Seitkalieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia;
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Oksana Son
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| | - Liudmila Tekutyeva
- Youth Research Laboratory of Recombinant DNA Technologies, Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (G.B.); (O.S.); (L.T.)
| |
Collapse
|
5
|
Keizer HG, Brands R, Oosting RS, Seinen W. A comprehensive model for the biochemistry of ageing, senescence and longevity. Biogerontology 2024; 25:615-626. [PMID: 38441836 DOI: 10.1007/s10522-024-10097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 07/02/2024]
Abstract
Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.
Collapse
Affiliation(s)
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Ronald Sake Oosting
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Willem Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
6
|
Eraqi WA, El-Sabbagh WA, Aziz RK, Elshahed MS, Youssef NH, Elkenawy NM. Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy. Anim Microbiome 2024; 6:40. [PMID: 39030597 PMCID: PMC11264694 DOI: 10.1186/s42523-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
Collapse
Affiliation(s)
- Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
7
|
Levy E, Fallet-Bianco C, Auclair N, Patey N, Marcil V, Sané AT, Spahis S. Unraveling Chylomicron Retention Disease Enhances Insight into SAR1B GTPase Functions and Mechanisms of Actions, While Shedding Light of Intracellular Chylomicron Trafficking. Biomedicines 2024; 12:1548. [PMID: 39062121 PMCID: PMC11274388 DOI: 10.3390/biomedicines12071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, significant efforts have been focused on unraveling congenital intestinal disorders that disrupt the absorption of dietary lipids and fat-soluble vitamins. The primary goal has been to gain deeper insights into intra-enterocyte sites, molecular steps, and crucial proteins/regulatory pathways involved, while simultaneously identifying novel therapeutic targets and diagnostic tools. This research not only delves into specific and rare malabsorptive conditions, such as chylomicron retention disease (CRD), but also contributes to our understanding of normal physiology through the utilization of cutting-edge cellular and animal models alongside advanced research methodologies. This review elucidates how modern techniques have facilitated the decoding of CRD gene defects, the identification of dysfunctional cellular processes, disease regulatory mechanisms, and the essential role of coat protein complex II-coated vesicles and cargo receptors in chylomicron trafficking and endoplasmic reticulum (ER) exit sites. Moreover, experimental approaches have shed light on the multifaceted functions of SAR1B GTPase, wherein loss-of-function mutations not only predispose individuals to CRD but also exacerbate oxidative stress, inflammation, and ER stress, potentially contributing to clinical complications associated with CRD. In addition to dissecting the primary disease pathology, genetically modified animal models have emerged as invaluable assets in exploring various ancillary aspects, including responses to environmental challenges such as dietary alterations, gender-specific disparities in disease onset and progression, and embryonic lethality or developmental abnormalities. In summary, this comprehensive review provides an in-depth and contemporary analysis of CRD, offering a meticulous examination of the CRD current landscape by synthesizing the latest research findings and advancements in the field.
Collapse
Affiliation(s)
- Emile Levy
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Catherine Fallet-Bianco
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nickolas Auclair
- Azrieli Research Center, CHU Ste-Justine and Pharmacology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Natalie Patey
- Azrieli Research Center, CHU Ste-Justine and Pathology & Cell Biology, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Azrieli Research Center, CHU Ste-Justine and Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | | | - Schohraya Spahis
- Azrieli Research Center, CHU Ste-Justine and Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| |
Collapse
|
8
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
9
|
Kassai S, de Vos P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr Rev Food Sci Food Saf 2024; 23:e13271. [PMID: 38284595 DOI: 10.1111/1541-4337.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/30/2024]
Abstract
Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.
Collapse
Affiliation(s)
- Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Fu H, Qi M, Yang Q, Li M, Yao G, Bu W, Zheng T, Pi X. Effects of dietary chito-oligosaccharide and β-glucan on the water quality and gut microbiota, intestinal morphology, immune response, and meat quality of Chinese soft-shell turtle ( Pelodiscus sinensis). Front Immunol 2023; 14:1266997. [PMID: 38022669 PMCID: PMC10643201 DOI: 10.3389/fimmu.2023.1266997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Chito-oligosaccharides (COS) and β-glucan are gradually being applied in aquaculture as antioxidants and immunomodulators. However, this study examined the effects of dietary supplementation of COS and β-glucan on the water quality, gut microbiota, intestinal morphology, non-specific immunity, and meat quality of Chinese soft-shell turtle. To investigate the possible mechanisms, 3-year-old turtles were fed basal diet (CK group) and 0.1%, 0.5%, and 1% COS or β-glucan supplemented diet for 4 weeks. Colon, liver, blood and muscle tissues, colon contents, water and sediment of paddy field samples were collected and analyzed after feeding 2 and 4 weeks. The results indicated that COS and β-glucan altered microbial community composition and diversity in Chinese soft-shell turtles. The relative abundance of Cellulosilyticum, Helicobacter and Solibacillus were increased after feeding COS, while Romboutsia, Akkermansia and Paraclostridium were increased after feeding β-glucan, whereas Cetobacterium, Vibrio and Edwardsiella were enriched in the control group. Furthermore, colon morphology analysis revealed that COS and β-glucan improved the length and number of intestinal villi, and the effect of 0.5% β-glucan was more obvious. Both β-glucan and COS significantly improved liver and serum lysozyme activity and antibacterial capacity. COS significantly increased the total antioxidant capacity in the liver. Further, 0.1% β-glucan significantly increased the activity of hepatic alkaline phosphatase, which closely related to the bacteria involved in lipid metabolism. Moreover, dietary supplementation with 1% COS and 1% β-glucan significantly enhanced the content of total amino acids, especially umami amino acids, in muscle tissue, with β-glucan exerting a stronger effect than COS. Additionally, these two prebiotics promoted the quality of culture water in paddy fields and reshaped the bacterial community composition of aquaculture environment. All these phenotypic changes were closely associated with the gut microbes regulated by these two prebiotics. In summary, the findings suggest that dietary supplementation with COS and β-glucan in Pelodiscus sinensis could modulate the gut microbiota, improve intestinal morphology, enhance non-specific immunity and antioxidant capacity of liver and serum, increase meat quality, and improve the culture water environment. This study provides new insights and a comprehensive understanding of the positive effects of COS and β-glucan on Pelodiscus sinensis.
Collapse
Affiliation(s)
- Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Qingman Yang
- Shaoxing Fisheries Technical Extension Center, Shaoxing, China
| | - Ming Li
- Jinhua Fisheries Technical Extension Center, Jinhua, China
| | - Gaohua Yao
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Weishao Bu
- Qingjiang Professional Cooperative for Ecological Farming Turtles, Lishui, China
| | - Tianlun Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|