1
|
Chancharoenthana W, Kamolratanakul S, Udompornpitak K, Wannigama DL, Schultz MJ, Leelahavanichkul A. Alcohol-induced gut permeability defect through dysbiosis and enterocytic mitochondrial interference causing pro-inflammatory macrophages in a dose dependent manner. Sci Rep 2025; 15:14710. [PMID: 40289168 PMCID: PMC12034794 DOI: 10.1038/s41598-025-97593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Although toxicity of alcohol toward the intestines and immunity is mentioned, there might be different effect of alcohol in a low and a high dose and the rodent model development using a simple SHIRPA binary score night be useful. Hence, a low and high dose of alcohol (6.30 and 1.26 g/kg/day) were administered in might for 16 weeks before determination of several parameters. As such, the peak blood alcohol concentration (BAC) of low and high dose of alcohol were approximately at 0.05 and 0.15%, respectively, at 1 h post-administration, which correlated with SHIRPA score at 1.8 ± 0.8 and 7.2 ± 0.6, respectively. After 16 wk of administration, a significant liver injury in high-dose alcohol was indicated by liver enzymes, liver weight, histology score, apoptosis, and hepatic accumulation of triglyceride (TG) and oxidative stress (malondialdehyde; MDA) with reduced anti-oxidant (glutathione). Meanwhile, low-dose alcohol demonstrated only elevated apoptosis with increased TG and MDA in liver tissue. Leaky gut from both dose of alcohol was also demonstrated by FITC-dextran, endotoxemia, serum beta glucan, and reduced occludin. However, bacterial abundance (microbiome analysis) of the feces from small bowel of high-dose alcohol, but not the low dose, was different from the control (increased Alitipes spp. with reduced Lachnospiraceae). In conclusion, both low- and high-dose alcohol induced leaky gut, while only the high-dose caused gut dysbiosis and alcohol damaged mitochondria but enhanced glycolysis in enterocytes and macrophages. Leaky gut might be more sensitive than dysbiosis to determine alcohol-induced intestinal injury.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 16/F Ratchanakarin Building 420/6 Rajvithi Rd., Ratchathewi, Bangkok, 10400, Thailand.
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 16/F Ratchanakarin Building 420/6 Rajvithi Rd., Ratchathewi, Bangkok, 10400, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kanyarat Udompornpitak
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, 10500, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10500, Thailand
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases, Faculty of Medicine Yamagata University and Yamagata University Hospital, Yamagata, Japan
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, 10500, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10500, Thailand.
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Chancharoenthana W, Kamolratanakul S, Rotcheewaphan S, Leelahavanichkul A, Schultz MJ. Recent advances in immunopathogenesis and clinical practice: mastering the challenge-managing of non-tuberculous mycobacteria. Front Immunol 2025; 16:1554544. [PMID: 40176807 PMCID: PMC11961655 DOI: 10.3389/fimmu.2025.1554544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM) are widespread environmental pathogens that can lead to significant disease burden, particularly in immunocompromised individuals, but also in those with a normal immune system. The global incidence of NTM is increasing rapidly, with Mycobacterium avium complex (MAC) being one of the most common types. The immunopathogenesis of the MAC involves a complex interaction between the bacteria and the host immune system. MAC survives and replicates within macrophages by preventing the fusion of phagosomes and lysosomes. The mycobacteria can neutralize reactive oxygen and nitrogen species produced by the macrophages through their own enzymes. Additionally, MAC modulates cytokine production, allowing it to suppress or regulate the immune response. Diagnosing MAC infections can be challenging, and the effectiveness of available treatments may be limited due to MAC's unpredictable resistance to various antimycobacterial drugs in different regions. Treating MAC infection requires a collaborative approach involving different healthcare professionals and ensuring patient compliance. This review aims to shed light on the complexities of MAC infection treatment, discussing the challenges of MAC infection diagnosis, pharmacological considerations, such as drug regimens, drug monitoring, drug interactions, and the crucial role of a multidisciplinary healthcare team in achieving the best possible treatment outcomes for patients.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Xu K, Tan J, Lin D, Jiang H, Chu Y, Zhou L, Zhang J, Lu Y. Gut microbes of the cecum versus the colon drive more severe lethality and multi-organ damage. Int Immunopharmacol 2025; 147:114029. [PMID: 39793233 DOI: 10.1016/j.intimp.2025.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear. This study investigates how gut flora influences outcomes from perforations at different sites in mice. Using fecal-induced peritonitis mouse model, isolated IC from the cecum or colon was injected peritoneally at 2 mg/kg. Bacterial burden was quantified with quantitative PCR, and microbial communities were analyzed using 16S rRNA gene sequencing. Survival rates were monitored, and blood biochemical indices, histological changes, cytokines expression, immunological signaling and multiple-organ damage were assessed at 16 h post-injections. The results showed cecum IC developed more severe sepsis than colon IC, with shorter median survival time and greater multi-organ damage. Mice treated with cecum IC displayed elevated tissue damage markers in the liver, heart, and kidneys, contributing to worsened pathology. This was likely driven by systematic inflammatory cytokines production and lung inflammation. Mechanistically, cecum IC triggered stronger cGAS-STING and TBK1-NF-κB signaling, promoting systemic inflammation compared to the colon IC. Moreover, bacterial analysis demonstrated that cecum IC carry a higher bacterial burden than colon IC and exhibit a different microbial community. A detailed microbiome comparison revealed an increased abundance of potentially pathogenic bacteria in the cecum IC. These findings suggest that the site of intestinal perforation influences sepsis severity, with the cecum being associated with a higher bacterial burden and a relatively increased abundance of potentially pathogenic bacteria compared to the colon. Our findings first compared the lethality associated with the microbial composition of the cecum and colon, indicating the perforation site could help providers predict the severity of sepsis, thereby introducing a novel perspective to microbiology and sepsis research.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha Hunan 410013, China
| | - Dongyang Lin
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Haoran Jiang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Luting Zhou
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
4
|
Ling X, Shen J, Liang J, Yang K, Yang J. Comparison of the Cecum Ligation and Puncture Method and the Intraperitoneal Lipopolysaccharide Injection Method for the Construction of a New-Onset Atrial Fibrillation Model of Sepsis. J Inflamm Res 2024; 17:9103-9117. [PMID: 39583857 PMCID: PMC11585273 DOI: 10.2147/jir.s485142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background New-onset atrial fibrillation (AF) in sepsis significantly impacted patient morbidity and mortality, yet the optimal animal model for studying this condition remains undetermined. This study aimed to establish a stable animal model for new-onset AF in sepsis and to explore the molecular mechanisms involved. Methods Forty-seven Sprague-Dawley rats were utilized, with the cecal ligation and puncture (CLP) group divided into 0.6 mm and 1.0 mm needle outer diameter subgroups, and the lipopolysaccharide (LPS) group into 5 mg/kg, 10 mg/kg, 15 mg/kg, and 20 mg/kg dosage subgroups. The incidence of new-onset AF and five-day mortality rates were compared to identify the most stable modeling conditions. Selected subgroups underwent further analysis, including cardiac ultrasound, electrophysiology, and pathological examinations. Inflammation-related molecular levels in the atrium were assessed using ELISA and Western blotting (WB). Results The intraperitoneal injection of 10 mg/kg LPS was identified as the most stable model for new-onset AF in sepsis, with significant findings including increased left atrial area and fibrosis, left ventricular pump dysfunction, uncoordinated ventricular wall motion, and impaired electrical impulse conduction. The effective atrial refractory period was markedly shorter, and susceptibility to AF was higher in the LPS group compared to the CLP group. Molecular analysis revealed elevated levels of NOD-like receptor protein 3(NLRP3) inflammasomes, apoptosis-associated speck-like protein containing a CARD(ASC), Caspase-1 p20 Elevated levels of three inflammation-related proteins and increased activity of the Sphingosine 1-phosphate/Sphingosine 1-phosphate Receptor 2(S1P/S1P2) signaling axis. Conclusion Intraperitoneal injection of 10 mg/kg of LPS can successfully construct a new-onset AF model in sepsis, and NLRP3 inflammatory vesicles mediated by the S1P/S1P2 signaling axis may promote new-onset AF in sepsis.
Collapse
Affiliation(s)
- Xiuwen Ling
- Emergency & Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People’s Republic of China
| | - Jun Shen
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Junqing Liang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Kai Yang
- Emergency & Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People’s Republic of China
| | - Jianzhong Yang
- Emergency & Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People’s Republic of China
| |
Collapse
|
5
|
Chatthanathon P, Leelahavanichkul A, Cheibchalard T, Wilantho A, Hirankarn N, Somboonna N. Comparative time-series analyses of gut microbiome profiles in genetically and chemically induced lupus-prone mice and the impacts of fecal transplantation. Sci Rep 2024; 14:26371. [PMID: 39487198 PMCID: PMC11530527 DOI: 10.1038/s41598-024-77672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Although the association between gut dysbiosis (imbalance of the microbiota) in systemic lupus erythematosus (SLE) is well-known, the simultaneous exploration in gut dysbiosis in fecal and different intestinal sections before and after lupus onset (at 2, 4, 6, 8, and 10 months old) resulting from the loss of inhibitory Fc gamma receptor IIb (FcGIIb) and pristane induction have never been conducted. Anti-dsDNA (an important lupus autoantibody) and proteinuria developed as early as 6 months old in both models, with higher levels in FcGRIIb deficient (FcGRIIb-/-) mice. Compared to the healthy control at 2 and 4 months, the lupus mice (both FcGRRIIb-/- and pristane) and healthy mice at 6 months old demonstrated an alteration as indicated by the Shannon alpha diversity index, highlighting influences of lupus- and age-induced dysbiosis, respectively. Non-metric multidimensional scaling (NMDS) revealed that the fecal microbiota of FcGRIIb-/- mice were distinct from the age-matched healthy control at all timepoints (at 6 month, p < 0.05), while pristane mice showed divergence at only some timepoints. Analyses of different intestinal sections revealed similarity among microbiota in the cecum, colon, and feces, contrasting with those in the small intestines (duodenum, jejunum, and ileum). Subtle differences were found between FcGRIIb-/- and pristane mice in feces and the intestinal sections as assessed by several analyses, for examples, the similar or dissimilar distances (NMDS), the neighbor-joining clustering, and the potential metabolisms (KEGG pathway analysis). Due to the differences between the gut microbiota (feces and intestinal sections) in the lupus mice and the healthy control, rebalancing of the microbiota using rectal administration of feces from the healthy control (fecal transplantation; FMT) to 7-month-old FcGIIb-/- mice (the established lupus; positive anti-dsDNA and proteinuria) was performed. In comparison to FcGRIIb-/- mice without FMT, FMT mice (more effect on the female than the male mice) showed the lower anti-dsDNA levels with similar fecal microbiome diversity (16s DNA gene copy number) and microbiota patterns to the healthy control. In conclusion, gut microbiota (feces and intestinal sections) of lupus mice (FcGRIIb-/- and pristane) diverged from the control as early as 4-6 months old, correlating with lupus characteristics (anti-dsDNA and proteinuria). The different gut microbiota in FcGRIIb-/- and pristane suggested a possible different gut microbiota in lupus with various molecular causes. Furthermore, FMT appeared to mitigate gut dysbiosis and reduce anti-dsDNA, supporting the benefit of the rebalancing gut microbiota in lupus, with more studies are warranted.
Collapse
Affiliation(s)
- Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alisa Wilantho
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Zeng C, Wan SR, Guo M, Tan XZ, Zeng Y, Wu Q, Xie JJ, Yan P, Long Y, Zheng L, Jiang ZZ, Teng FY, Xu Y. Fecal virome transplantation: A promising strategy for the treatment of metabolic diseases. Biomed Pharmacother 2024; 177:117065. [PMID: 38971010 DOI: 10.1016/j.biopha.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi Wu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia-Jie Xie
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Yang Long
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
Sutnu N, Chancharoenthana W, Kamolratanakul S, Phuengmaung P, Singkham-In U, Chongrak C, Montathip S, Wannigama DL, Chatsuwan T, Ounjai P, Schultz MJ, Leelahavanichkul A. Bacteriophages isolated from mouse feces attenuates pneumonia mice caused by Pseudomonas aeruginosa. PLoS One 2024; 19:e0307079. [PMID: 39012882 PMCID: PMC11251617 DOI: 10.1371/journal.pone.0307079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Most of the current bacteriophages (phages) are mostly isolated from environments. However, phages isolated from feces might be more specific to the bacteria that are harmful to the host. Meanwhile, some phages from the environment might affect non-pathogenic bacteria for the host. METHODS Here, bacteriophages isolated from mouse feces were intratracheally (IT) or intravenously (IV) administered in pneumonia mice caused by Pseudomonas aeruginosa at 2 hours post-intratracheal bacterial administration. As such, the mice with phage treatment, using either IT or IV administration, demonstrated less severe pneumonia as indicated by mortality, serum cytokines, bacteremia, bacterial abundance in bronchoalveolar lavage fluid (BALF), and neutrophil extracellular traps (NETs) in lung tissue (immunofluorescence of neutrophil elastase and myeloperoxidase). RESULTS Interestingly, the abundance of phages in BALF from the IT and IV injections was similar, supporting a flexible route of phage administration. With the incubation of bacteria with neutrophils, the presence of bacteriophages significantly improved bactericidal activity, but not NETs formation, with the elevated supernatant IL-6 and TNF-α, but not IL-1β. In conclusion, our findings suggest that bacteriophages against Pseudomonas aeruginosa can be discovered from feces of the host. CONCLUSIONS The phages attenuate pneumonia partly through an enhanced neutrophil bactericidal activity, but not via inducing NETs formation. The isolation of phages from the infected hosts themselves might be practically useful for future treatment. More studies are warranted.
Collapse
Affiliation(s)
- Nuttawut Sutnu
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Tropical Immunology and Translational Research Unit (TITRU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Tropical Immunology and Translational Research Unit (TITRU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirikan Montathip
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamakata Prefectural Central Hospital, Yamakata, Japan
- Department of Infectious Diseases and Infection Control, Pathogen Hunter’s Research Collaborative Team, Yamakata Prefectural Central Hospital, Yamakata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Hiengrach P, Chindamporn A, Leelahavanichkul A. Kazachstania pintolopesii in Blood and Intestinal Wall of Macrophage-Depleted Mice with Cecal Ligation and Puncture, the Control of Fungi by Macrophages during Sepsis. J Fungi (Basel) 2023; 9:1164. [PMID: 38132765 PMCID: PMC10744925 DOI: 10.3390/jof9121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Although macrophage depletion is a possible emerging therapeutic strategy for osteoporosis and melanoma, the lack of macrophage functions can lead to inappropriate microbial control, especially the regulation of intestinal microbiota. Cecal ligation and puncture (CLP) sepsis was performed in regular mice and in mice with clodronate-induced macrophage depletion. Macrophage depletion significantly increased the mortality and severity of sepsis-CLP mice, partly through the increased fecal Ascomycota, especially Kazachstania pintolopesii, with polymicrobialbacteremia (Klebsiella pneumoniae, Enterococcus faecalis, and Acinetobacter radioresistens). Indeed, macrophage depletion with sepsis facilitated gut dysbiosis that directly affected gut permeability as yeast cells were located and hidden in the colon crypts. To determine the interactions of fungal molecules on bacterial abundance, the heat-kill lysate of fungi (K. pintolopesii and C. albicans) and purified (1→3)-β-d-glucan (BG; a major component of the fungal cell wall) were incubated with bacteria that were isolated from the blood of macrophage-depleted mice. There was enhanced cytokine production of enterocytes (Caco-2) after the incubation of the lysate of K. pintolopesii (isolated from sepsis mice), the lysate of C. albicans (extracted from sepsis patients), and BG, together with bacterial lysate. These data support a possible influence of fungi in worsening sepsis severity. In conclusion, macrophage depletion enhanced K. pintolopesii in feces, causing the overgrowth of fecal pathogenic bacteria and inducing a gut permeability defect that additively worsened sepsis severity. Hence, the fecal fungus could be spontaneously elevated and altered in response to macrophage-depleted therapy, which might be associated with sepsis severity.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Zhang L, Shi X, Qiu H, Liu S, Yang T, Li X, Liu X. Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review. Front Immunol 2023; 14:1171834. [PMID: 37869005 PMCID: PMC10587562 DOI: 10.3389/fimmu.2023.1171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a major life-threatening syndrome of organ dysfunction caused by a dysregulated host response due to infection. Dysregulated immunometabolism is fundamental to the onset of sepsis. Particularly, short-chain fatty acids (SCFAs) are gut microbes derived metabolites serving to drive the communication between gut microbes and the immune system, thereby exerting a profound influence on the pathophysiology of sepsis. Protein post-translational modifications (PTMs) have emerged as key players in shaping protein function, offering novel insights into the intricate connections between metabolism and phenotype regulation that characterize sepsis. Accumulating evidence from recent studies suggests that SCFAs can mediate various PTM-dependent mechanisms, modulating protein activity and influencing cellular signaling events in sepsis. This comprehensive review discusses the roles of SCFAs metabolism in sepsis associated inflammatory and immunosuppressive disorders while highlights recent advancements in SCFAs-mediated lysine acylation modifications, such as substrate supplement and enzyme regulation, which may provide new pharmacological targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xinhui Shi
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Ting Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Chancharoenthana W, Kamolratanakul S, Yiengwattananon P, Phuengmaung P, Udompornpitak K, Saisorn W, Hiengrach P, Visitchanakun P, Schultz MJ, Leelahavanichkul A. Enhanced lupus progression in alcohol-administered Fc gamma receptor-IIb-deficiency lupus mice, partly through leaky gut-induced inflammation. Immunol Cell Biol 2023; 101:746-765. [PMID: 37575046 DOI: 10.1111/imcb.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Alcohol can induce a leaky gut, with translocation of microbial molecules from the gut into the blood circulation. Although the contribution of inflammation to organ-mediated damage in lupus has been previously demonstrated, the mechanistic roles of alcohol consumption in lupus activation are not known. Herein, we tested the effects of 10-week lasting alcohol administration on organ damages and immune responses in 8-week-old lupus-prone Fc gamma receptor IIb-deficient (FcγRIIb-/- ) mice. Our study endpoints were evaluation of systemic inflammation and assessment of fecal dysbiosis along with endotoxemia. In comparison with alcohol-administered wild-type mice, FcγRIIb-/- mice demonstrated more prominent liver damage (enzyme, histological score, apoptosis, malondialdehyde oxidant) and serum interleukin(IL)-6 levels, despite a similarity in leaky gut (fluorescein isothiocyanate-dextran assay, endotoxemia and gut occludin-1 immunofluorescence), fecal dysbiosis (microbiome analysis) and endotoxemia. All alcohol-administered FcγRIIb-/- mice developed lupus-like characteristics (serum anti-dsDNA, proteinuria, serum creatinine and kidney injury score) with spleen apoptosis, whereas control FcγRIIb-/- mice showed only a subtle anti-dsDNA. Both alcohol and lipopolysaccharide (LPS) similarly impaired enterocyte integrity (transepithelial electrical resistance), and only LPS, but not alcohol, upregulated the IL-8 gene in Caco-2 cells. In macrophages, alcohol mildly activated supernatant cytokines (tumor necrosis factor-α and IL-6), but not M1 polarization-associated genes (IL-1β and iNOS), whereas LPS prominently induced both parameters (more prominent in FcγRIIb-/- macrophages than wild type). There was no synergy in LPS plus alcohol compared with LPS alone in both enterocytes and macrophages. In conclusion, alcohol might exacerbate lupus-like activity partly through a profound inflammation from the leaky gut in FcγRIIb-/- mice.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Pornpimol Phuengmaung
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Ling H, Lin Y, Bao W, Xu N, Chen L, Zhao L, Liu C, Shen Y, Zhang D, Gong Y, Gao Q, Wang J, Jin S. Erythropoietin-mediated IL-17 F attenuates sepsis-induced gut microbiota dysbiosis and barrier dysfunction. Biomed Pharmacother 2023; 165:115072. [PMID: 37390712 DOI: 10.1016/j.biopha.2023.115072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Septic gut damage is critical in the progression of sepsis and multiple organ failure, characterized by gut microbiota dysbiosis and epithelium deficiency in the gut barrier. Recent studies highlight the protective effects of Erythropoietin (EPO) on multiple organs. The present study found that EPO treatment significantly alleviated the survival rate, suppressed inflammatory responses, and ameliorated intestine damage in mice with sepsis. EPO treatment also reversed sepsis-induced gut microbiota dysbiosis. The protective role of EPO in the gut barrier and microbiota was impaired after EPOR knockout. Notably, we innovatively demonstrated that IL-17 F screened by transcriptome sequencing could ameliorate sepsis and septic gut damage including gut microbiota dysbiosis and barrier dysfunction, which was verified by IL-17 F-treated fecal microbiota transplantation (FMT) as well. Our findings highlight the protection effects of EPO-mediated IL-17 F in sepsis-induced gut damage by alleviating gut barrier dysfunction and restoring gut microbiota dysbiosis. EPO and IL-17 F may be potential therapeutic targets in septic patients.
Collapse
Affiliation(s)
- Hanzhi Ling
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yufan Lin
- The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weilei Bao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education,Wenzhou Medical University, Zhejiang 325035, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang 325035, China
| | - Nannan Xu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liping Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanlong Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yecheng Shen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danlu Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuqiang Gong
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Qiuqi Gao
- The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education,Wenzhou Medical University, Zhejiang 325035, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang 325035, China.
| |
Collapse
|
12
|
Sae-Khow K, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Boonmee A, Benjaskulluecha S, Palaga T, Leelahavanichkul A. Less Severe Polymicrobial Sepsis in Conditional mgmt-Deleted Mice Using LysM-Cre System, Impacts of DNA Methylation and MGMT Inhibitor in Sepsis. Int J Mol Sci 2023; 24:10175. [PMID: 37373325 DOI: 10.3390/ijms241210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase (MGMT) is a DNA suicide repair enzyme that might be important during sepsis but has never been explored. Then, the proteomic analysis of lipopolysaccharide (LPS)-stimulated wild-type (WT) macrophages increased proteasome proteins and reduced oxidative phosphorylation proteins compared with control, possibly related to cell injury. With LPS stimulation, mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated less profound inflammation; supernatant cytokines (TNF-α, IL-6, and IL-10) and pro-inflammatory genes (iNOS and IL-1β), with higher DNA break (phosphohistone H2AX) and cell-free DNA, but not malondialdehyde (the oxidative stress), compared with the littermate control (mgmtflox/flox; LysM-Cre-/-). In parallel, mgmt null mice (MGMT loss only in the myeloid cells) demonstrated less severe sepsis in the cecal ligation and puncture (CLP) model (with antibiotics), as indicated by survival and other parameters compared with sepsis in the littermate control. The mgmt null protective effect was lost in CLP mice without antibiotics, highlighting the importance of microbial control during sepsis immune modulation. However, an MGMT inhibitor in CLP with antibiotics in WT mice attenuated serum cytokines but not mortality, requiring further studies. In conclusion, an absence of mgmt in macrophages resulted in less severe CLP sepsis, implying a possible influence of guanine DNA methylation and repair in macrophages during sepsis.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Saisorn W, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Sae-Khow K, Boonmee A, Benjaskulluecha S, Nita-Lazar A, Palaga T, Leelahavanichkul A. Less Severe Lipopolysaccharide-Induced Inflammation in Conditional mgmt-Deleted Mice with LysM-Cre System: The Loss of DNA Repair in Macrophages. Int J Mol Sci 2023; 24:10139. [PMID: 37373287 DOI: 10.3390/ijms241210139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the known influence of DNA methylation from lipopolysaccharide (LPS) activation, data on the O6-methylguanine-DNA methyltransferase (MGMT, a DNA suicide repair enzyme) in macrophages is still lacking. The transcriptomic profiling of epigenetic enzymes from wild-type macrophages after single and double LPS stimulation, representing acute inflammation and LPS tolerance, respectively, was performed. Small interfering RNA (siRNA) silencing of mgmt in the macrophage cell line (RAW264.7) and mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated lower secretion of TNF-α and IL-6 and lower expression of pro-inflammatory genes (iNOS and IL-1β) compared with the control. Macrophage injury after a single LPS dose and LPS tolerance was demonstrated by reduced cell viability and increased oxidative stress (dihydroethidium) compared with the activated macrophages from littermate control mice (mgmtflox/flox; LysM-Cre-/-). Additionally, a single LPS dose and LPS tolerance also caused mitochondrial toxicity, as indicated by reduced maximal respiratory capacity (extracellular flux analysis) in the macrophages of both mgmt null and control mice. However, LPS upregulated mgmt only in LPS-tolerant macrophages but not after the single LPS stimulation. In mice, the mgmt null group demonstrated lower serum TNF-α, IL-6, and IL-10 than control mice after either single or double LPS stimulation. Suppressed cytokine production resulting from an absence of mgmt in macrophages caused less severe LPS-induced inflammation but might worsen LPS tolerance.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, MD 20892-1892, USA
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, MD 20892-1892, USA
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Wang S, Xiong L, Ruan Z, Gong X, Luo Y, Wu C, Wang Y, Shang H, Chen J. Indole-3-propionic acid alleviates sepsis-associated acute liver injury by activating pregnane X receptor. Mol Med 2023; 29:65. [PMID: 37208586 DOI: 10.1186/s10020-023-00658-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The morbidity and mortality of sepsis are extremely high, which is a major problem plaguing human health. However, current drugs and measures for the prevention and treatment of sepsis have little effect. Sepsis-associated acute liver injury (SALI) is an independent risk factor for sepsis, which seriously affects the prognosis of sepsis. Studies have found that gut microbiota is closely related to SALI, and indole-3-propionic Acid (IPA) can activate Pregnane X receptor (PXR). However, the role of IPA and PXR in SALI has not been reported. METHODS This study aimed to explore the association between IPA and SALI. The clinical data of SALI patients were collected and IPA level in feces was detected. The sepsis model was established in wild-type mice and PXR knockout mice to investigate the role of IPA and PXR signaling in SALI. RESULTS We showed that the level of IPA in patients' feces is closely related to SALI, and the level of IPA in feces has a good ability to identify and diagnose SALI. IPA pretreatment significantly attenuated septic injury and SALI in wild-type mice, but not found in knockout PXR gene mice. CONCLUSIONS IPA alleviates SALI by activating PXR, which reveals a new mechanism of SALI, and provides potentially effective drugs and targets for the prevention of SALI.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Liangzhi Xiong
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhihua Ruan
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaofang Gong
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yanrong Luo
- Physical examination center, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, 442000, Hubei, China
| | - Chengyi Wu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Hui Shang
- Department of Orthopaedic, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
15
|
Phuengmaung P, Khiewkamrop P, Makjaroen J, Issara-Amphorn J, Boonmee A, Benjaskulluecha S, Ritprajak P, Nita-Lazar A, Palaga T, Hirankarn N, Leelahavanichkul A. Less Severe Sepsis in Cecal Ligation and Puncture Models with and without Lipopolysaccharide in Mice with Conditional Ezh2-Deleted Macrophages (LysM-Cre System). Int J Mol Sci 2023; 24:ijms24108517. [PMID: 37239864 DOI: 10.3390/ijms24108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Despite a previous report on less inflammatory responses in mice with an absence of the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, using a lipopolysaccharide (LPS) injection model, proteomic analysis and cecal ligation and puncture (CLP), a sepsis model that more resembles human conditions was devised. As such, analysis of cellular and secreted protein (proteome and secretome) after a single LPS activation and LPS tolerance in macrophages from Ezh2 null (Ezh2flox/flox; LysM-Crecre/-) mice (Ezh2 null) and the littermate control mice (Ezh2fl/fl; LysM-Cre-/-) (Ezh2 control) compared with the unstimulated cells from each group indicated fewer activities in Ezh2 null macrophages, especially by the volcano plot analysis. Indeed, supernatant IL-1β and expression of genes in pro-inflammatory M1 macrophage polarization (IL-1β and iNOS), TNF-α, and NF-κB (a transcription factor) were lower in Ezh2 null macrophages compared with the control. In LPS tolerance, downregulated NF-κB compared with the control was also demonstrated in Ezh2 null cells. In CLP sepsis mice, those with CLP alone and CLP at 2 days after twice receiving LPS injection, representing sepsis and sepsis after endotoxemia, respectively, symptoms were less severe in Ezh2 null mice, as indicated by survival analysis and other biomarkers. However, the Ezh2 inhibitor improved survival only in CLP, but not LPS with CLP. In conclusion, an absence of Ezh2 in macrophages resulted in less severe sepsis, and the use of an Ezh2 inhibitor might be beneficial in sepsis.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phuriwat Khiewkamrop
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Chancharoenthana W, Kamolratanakul S, Schultz MJ, Leelahavanichkul A. The leaky gut and the gut microbiome in sepsis - targets in research and treatment. Clin Sci (Lond) 2023; 137:645-662. [PMID: 37083032 PMCID: PMC10133873 DOI: 10.1042/cs20220777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Both a leaky gut (a barrier defect of the intestinal surface) and gut dysbiosis (a change in the intestinal microbial population) are intrinsic to sepsis. While sepsis itself can cause dysbiosis, dysbiosis can worsen sepsis. The leaky gut syndrome refers to a status with which there is an increased intestinal permeability allowing the translocation of microbial molecules from the gut into the blood circulation. It is not just a symptom of gastrointestinal involvement, but also an underlying cause that develops independently, and its presence could be recognized by the detection, in blood, of lipopolysaccharides and (1→3)-β-D-glucan (major components of gut microbiota). Gut-dysbiosis is the consequence of a reduction in some bacterial species in the gut microbiome, as a consequence of intestinal mucosal immunity defect, caused by intestinal hypoperfusion, immune cell apoptosis, and a variety of enteric neuro-humoral-immunity responses. A reduction in bacteria that produce short-chain fatty acids could change the intestinal barriers, leading to the translocation of pathogen molecules, into the circulation where it causes systemic inflammation. Even gut fungi might be increased in human patients with sepsis, even though this has not been consistently observed in murine models of sepsis, probably because of the longer duration of sepsis and also antibiotic use in patients. The gut virobiome that partly consists of bacteriophages is also detectable in gut contents that might be different between sepsis and normal hosts. These alterations of gut dysbiosis altogether could be an interesting target for sepsis adjuvant therapies, e.g., by faecal transplantation or probiotic therapy. Here, current information on leaky gut and gut dysbiosis along with the potential biomarkers, new treatment strategies, and future research topics are mentioned.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
The Regulatory Roles of Ezh2 in Response to Lipopolysaccharide (LPS) in Macrophages and Mice with Conditional Ezh2 Deletion with LysM-Cre System. Int J Mol Sci 2023; 24:ijms24065363. [PMID: 36982437 PMCID: PMC10049283 DOI: 10.3390/ijms24065363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The responses of macrophages to lipopolysaccharide (LPS) might determine the direction of clinical manifestations of sepsis, which is the immune response against severe infection. Meanwhile, the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, might interfere with LPS response. Transcriptomic analysis on LPS-activated wild-type macrophages demonstrated an alteration of several epigenetic enzymes. Although the Ezh2-silencing macrophages (RAW264.7), using small interfering RNA (siRNA), indicated a non-different response to the control cells after a single LPS stimulation, the Ezh2-reducing cells demonstrated a less severe LPS tolerance, after two LPS stimulations, as determined by the higher supernatant TNF-α. With a single LPS stimulation, Ezh2 null (Ezh2flox/flox; LysM-Crecre/−) macrophages demonstrated lower supernatant TNF-α than Ezh2 control (Ezh2fl/fl; LysM-Cre−/−), perhaps due to an upregulation of Socs3, which is a suppressor of cytokine signaling 3, due to the loss of the Ezh2 gene. In LPS tolerance, Ezh2 null macrophages indicated higher supernatant TNF-α and IL-6 than the control, supporting an impact of the loss of the Ezh2 inhibitory gene. In parallel, Ezh2 null mice demonstrated lower serum TNF-α and IL-6 than the control mice after an LPS injection, indicating a less severe LPS-induced hyper-inflammation in Ezh2 null mice. On the other hand, there were similar serum cytokines after LPS tolerance and the non-reduction of serum cytokines after the second dose of LPS, indicating less severe LPS tolerance in Ezh2 null mice compared with control mice. In conclusion, an absence of Ezh2 in macrophages resulted in less severe LPS-induced inflammation, as indicated by low serum cytokines, with less severe LPS tolerance, as demonstrated by higher cytokine production, partly through the upregulated Socs3.
Collapse
|
18
|
Tongthong T, Kaewduangduen W, Phuengmaung P, Chancharoenthana W, Leelahavanichkul A. Lacticaseibacillus rhamnosus dfa1 Attenuate Cecal Ligation-Induced Systemic Inflammation through the Interference in Gut Dysbiosis, Leaky Gut, and Enterocytic Cell Energy. Int J Mol Sci 2023; 24:ijms24043756. [PMID: 36835163 PMCID: PMC9960508 DOI: 10.3390/ijms24043756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Despite an uncommon condition, the clinical management of phlegmon appendicitis (retention of the intra-abdominal appendiceal abscess) is still controversial, and probiotics might be partly helpful. Then, the retained ligated cecal appendage (without gut obstruction) with or without oral Lacticaseibacillus rhamnosus dfa1 (started at 4 days prior to the surgery) was used as a representative model. At 5 days post-surgery, the cecal-ligated mice demonstrated weight loss, soft stool, gut barrier defect (leaky gut using FITC-dextran assay), fecal dysbiosis (increased Proteobacteria with reduced bacterial diversity), bacteremia, elevated serum cytokines, and spleen apoptosis without kidney and liver damage. Interestingly, the probiotics attenuated disease severity as indicated by stool consistency index, FITC-dextran assay, serum cytokines, spleen apoptosis, fecal microbiota analysis (reduced Proteobacteria), and mortality. Additionally, impacts of anti-inflammatory substances from culture media of the probiotics were demonstrated by attenuation of starvation injury in the Caco-2 enterocyte cell line as indicated by transepithelial electrical resistance (TEER), inflammatory markers (supernatant IL-8 with gene expression of TLR4 and NF-κB), cell energy status (extracellular flux analysis), and the reactive oxygen species (malondialdehyde). In conclusion, gut dysbiosis and leaky-gut-induced systemic inflammation might be helpful clinical parameters for patients with phlegmon appendicitis. Additionally, the leaky gut might be attenuated by some beneficial molecules from probiotics.
Collapse
Affiliation(s)
- Tongthong Tongthong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiwat Chancharoenthana
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-256-4251
| |
Collapse
|
19
|
Lipopolysaccharide Tolerance Enhances Murine Norovirus Reactivation: An Impact of Macrophages Mainly Evaluated by Proteomic Analysis. Int J Mol Sci 2023; 24:ijms24031829. [PMID: 36768154 PMCID: PMC9916340 DOI: 10.3390/ijms24031829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Because of endotoxemia during sepsis (a severe life-threatening infection), lipopolysaccharide (LPS) tolerance (the reduced responses to the repeated LPS stimulation) might be one of the causes of sepsis-induced immune exhaustion (the increased susceptibility to secondary infection and/or viral reactivation). In LPS tolerance macrophage (twice-stimulated LPS, LPS/LPS) compared with a single LPS stimulation (N/LPS), there was (i) reduced energy of the cell in both glycolysis and mitochondrial activities (extracellular flux analysis), (ii) decreased abundance of the following proteins (proteomic analysis): (a) complex I and II of the mitochondrial electron transport chain, (b) most of the glycolysis enzymes, (c) anti-viral responses with Myxovirus resistance protein 1 (Mx1) and Ubiquitin-like protein ISG15 (Isg15), (d) antigen presentation pathways, and (iii) the down-regulated anti-viral genes, such as Mx1 and Isg15 (polymerase chain reaction). To test the correlation between LPS tolerance and viral reactivation, asymptomatic mice with and without murine norovirus (MNV) infection as determined in feces were tested. In MNV-positive mice, MNV abundance in the cecum, but not in feces, of LPS/LPS mice was higher than that in N/LPS and control groups, while MNV abundance of N/LPS and control were similar. Additionally, the down-regulated Mx1 and Isg15 were also demonstrated in the cecum, liver, and spleen in LPS/LPS-activated mice, regardless of MNV infection, while N/LPS more prominently upregulated these genes in the cecum of MNV-positive mice compared with the MNV-negative group. In conclusion, defects in anti-viral responses after LPS tolerance, perhaps through the reduced energy status of macrophages, might partly be responsible for the viral reactivation. More studies on patients are of interest.
Collapse
|