1
|
Park J, Jang JY, Kim JH, Yi SE, Lee YJ, Yu MS, Chung YS, Jang YJ, Kim JH, Kang K. SLC27A2 marks lipid peroxidation in nasal epithelial cells driven by type 2 inflammation in chronic rhinosinusitis with nasal polyps. Exp Mol Med 2025; 57:856-871. [PMID: 40195539 PMCID: PMC12045986 DOI: 10.1038/s12276-025-01440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by persistent inflammation and epithelial cell dysfunction, but the underlying molecular mechanisms remain poorly understood. Here we show that dysregulated lipid metabolism and increased lipid peroxidation in nasal polyp epithelial cells contribute to the pathogenesis of CRSwNP. Integrated analysis of bulk and single-cell RNA sequencing data reveals upregulation of SLC27A2/FATP2 in nasal polyp epithelium, which correlates with increased lipid peroxidation. SLC27A2-positive epithelial cells exhibit enriched expression of lipid peroxidation pathway genes and enhanced responsiveness to IL-4/IL-13 signaling from Th2 and ILC2 cells. Inhibition of IL-4/IL-13 signaling by dupilumab reduces expression of lipid peroxidation-associated genes, including SLC27A2. In eosinophilic CRSwNP, SLC27A2 expression correlates with disease severity. Pharmacological inhibition of FATP2 in air-liquid interface cultures of nasal epithelial cells decreases expression of IL13RA1 and lipid peroxidation-related genes. Our findings identify FATP2-mediated lipid peroxidation as a key driver of epithelial dysfunction and inflammation in CRSwNP, providing new insights into disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jaewoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jung Yeon Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Heon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Eun Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeong Ju Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myeong Sang Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoo-Sam Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Ju Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Heui Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Zhong X, Song J, Lei C, Wang X, Wang Y, Yu J, Dai W, Xu X, Fan J, Xia X, Zhang W. Machine learning-based screening of asthma biomarkers and related immune infiltration. FRONTIERS IN ALLERGY 2025; 6:1506608. [PMID: 39963184 PMCID: PMC11831286 DOI: 10.3389/falgy.2025.1506608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Asthma has an annual increasing morbidity rate and imposes a heavy social burden on public healthcare systems. The aim of this study was to use machine learning to identify asthma-specific genes for the prediction and diagnosis of asthma. Methods Differentially expressed genes (DEGs) related to asthma were identified by examining public sequencing data from the Gene Expression Omnibus, coupled with the support vector machine recursive feature elimination and least absolute shrinkage and selection operator regression model. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis and correlation analyses between gene and immune cell levels were performed. An ovalbumin-induced asthma mouse model was established, and eukaryotic reference transcriptome high-throughput sequencing was performed to identify genes expressed in mouse lung tissues. Results Thirteen specific asthma genes were obtained from our dataset analysis (LOC100132287, CEACAM5, PRR4, CPA3, POSTN, LYPD2, TCN1, SCGB3A1, NOS2, CLCA1, TPSAB1, CST1, and C7orf26). The GO analysis demonstrated that DEGs linked to asthma were primarily related to positive regulation of guanylate cyclase activity, gpi anchor binding, peptidase activity and arginine binding. The renin-angiotensin system, arginine biosynthesis and arginine and proline metabolism were the key KEGG pathways of DEGs. Additionally, the genes CEACAM5, PRR4, CPA3, POSTN, CLCA1, and CST1 expression levels were positively associated with plasma cells and resting mast cells. The mouse model revealed elevated nos2 and clca1 expression in the asthmatic mouse group compared with that in normal mice, which was consistent with the findings in asthmatic patients. Discussion This study identified new marker genes for the prediction and diagnosis of asthma, which can be further validated and applied clinically.
Collapse
Affiliation(s)
- Xiaoying Zhong
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The 2nd Ward of Pediatrics, Jinhua Maternal and Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Jingjing Song
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changyu Lei
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Wang
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yufei Wang
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahui Yu
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Dai
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Xu
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwen Fan
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Xia
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixi Zhang
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Irizar H, Chun Y, Hsu HHL, Li YC, Zhang L, Arditi Z, Grishina G, Grishin A, Vicencio A, Pandey G, Bunyavanich S. Multi-omic integration reveals alterations in nasal mucosal biology that mediate air pollutant effects on allergic rhinitis. Allergy 2024; 79:3047-3061. [PMID: 38796780 PMCID: PMC11560721 DOI: 10.1111/all.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Allergic rhinitis is a common inflammatory condition of the nasal mucosa that imposes a considerable health burden. Air pollution has been observed to increase the risk of developing allergic rhinitis. We addressed the hypotheses that early life exposure to air toxics is associated with developing allergic rhinitis, and that these effects are mediated by DNA methylation and gene expression in the nasal mucosa. METHODS In a case-control cohort of 505 participants, we geocoded participants' early life exposure to air toxics using data from the US Environmental Protection Agency, assessed physician diagnosis of allergic rhinitis by questionnaire, and collected nasal brushings for whole-genome DNA methylation and transcriptome profiling. We then performed a series of analyses including differential expression, Mendelian randomization, and causal mediation analyses to characterize relationships between early life air toxics, nasal DNA methylation, nasal gene expression, and allergic rhinitis. RESULTS Among the 505 participants, 275 had allergic rhinitis. The mean age of the participants was 16.4 years (standard deviation = 9.5 years). Early life exposure to air toxics such as acrylic acid, phosphine, antimony compounds, and benzyl chloride was associated with developing allergic rhinitis. These air toxics exerted their effects by altering the nasal DNA methylation and nasal gene expression levels of genes involved in respiratory ciliary function, mast cell activation, pro-inflammatory TGF-β1 signaling, and the regulation of myeloid immune cell function. CONCLUSIONS Our results expand the range of air pollutants implicated in allergic rhinitis and shed light on their underlying biological mechanisms in nasal mucosa.
Collapse
Affiliation(s)
- Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yan-Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Galina Grishina
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexander Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alfin Vicencio
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
4
|
Wang H, Xu X, Lu H, Zheng Y, Shao L, Lu Z, Zhang Y, Song X. Identification of Potential Feature Genes in CRSwNP Using Bioinformatics Analysis and Machine Learning Strategies. J Inflamm Res 2024; 17:7573-7590. [PMID: 39464338 PMCID: PMC11512703 DOI: 10.2147/jir.s484914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The pathogenesis of CRSwNP is complex and not yet fully explored, so we aimed to identify the pivotal hub genes and associated pathways of CRSwNP, to facilitate the detection of novel diagnostic or therapeutic targets. Methods Utilizing two CRSwNP sequencing datasets from GEO, differential expression gene analysis, WGCNA, and three machine learning methods (LASSO, RF and SVM-RFE) were applied to screen for hub genes. A diagnostic model was then formulated utilizing hub genes, and the AUC was generated to evaluate the performance of the prognostic model and candidate genes. Hub genes were validated through the validation set and qPCR performed on normal mice and CRSwNP mouse model. Lastly, the ssGSEA algorithm was employed to assess the differences in immune infiltration levels. Results A total of 239 DEGs were identified, with 170 upregulated and 69 downregulated in CRSwNP. Enrichment analysis revealed that these DEGs were primarily enriched in pathways related to nucleocytoplasmic transport and HIF-1 signaling pathway. Data yielded by WGCNA analysis contained 183 DEGs. The application of three machine learning algorithms identified 11 hub genes. Following concurrent validation analysis with the validation set and qPCR performed after establishing the mouse model confirmed the overexpression of BTBD10, ERAP1, GIPC1, and PEX6 in CRSwNP. The examination of immune cell infiltration suggested that the infiltration rate of type 2 T helper cell and memory B cell experienced a decline in the CRSwNP group. Conversely, the infiltration rates of Immature dendritic cell and Effector memory CD8 T cell were positive correlation. Conclusion This study successfully identified and validated BTBD10, ERAP1, GIPC1, and PEX6 as potential novel diagnostic or therapeutic targets for CRSwNP, which offers a fresh perspective and a theoretical foundation for the diagnostic prediction and therapeutic approach to CRSwNP.
Collapse
Affiliation(s)
- Huikang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xinjun Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Haoran Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Yang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Liting Shao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, QingdaoUniversity, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Zhaoyang Lu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, People’s Republic of China
| | - Yu Zhang
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xicheng Song
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| |
Collapse
|
5
|
Kang J, Yong H, Zhang Z, Liu J, Gao X, Shao H, Hou L. A clinical study on the relationship between chronic rhinosinusitis and bronchial asthma. Front Med (Lausanne) 2024; 11:1388585. [PMID: 39478813 PMCID: PMC11521833 DOI: 10.3389/fmed.2024.1388585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Objective To investigate the correlation between chronic rhinosinusitis (CRS) and bronchial asthma, focusing on the CRS without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP), as well as their impact on lung function. Methods A total of 141 patients diagnosed with chronic nasal-sinus inflammation were included in this study. Clinical data, including medical histories, nasal endoscopy scores, CT scores, symptom scores, and quality of life assessments, were collected. Results Among the patients with CRSsNP, 23.8% had concomitant bronchial asthma. The incidence of asthma was significantly associated with the severity of sinus involvement in CRSsNP patients (p = 0.049). Pulmonary function impairment was correlated with the severity of sinus inflammation in CRSsNP patients (p = 0.019). Quality of life was significantly affected in patients with concomitant asthma and CRSsNP or CRSwNP. Conclusion Chronic rhinosinusitis, both with and without nasal polyps, is closely correlated with bronchial asthma. Pulmonary function impairment is associated with the extent of inflammatory lesions in CRSsNP. Although CRSwNP does not significantly affect pulmonary function, the treatment of sinus diseases can contribute to the control of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Hou
- Department of Otorhinolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Chen P, Cheng Y, Hu J, Fang R, Yang LQ. Recombinant CXCL17 Treatment Alleviates Hyperoxia-Induced Lung Apoptosis and Inflammation In Vivo and Vitro by Activating the AKT Pathway: A Possible Therapeutic Approach for Bronchopulmonary Dysplasia. Mol Biotechnol 2024; 66:2349-2361. [PMID: 37710083 DOI: 10.1007/s12033-023-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Bronchopulmonary dysplasia (BPD), caused by hyperoxia exposure, is the most common complication affecting preterm infants. The C-X-C motif chemokine ligand 17 (CXCL17) belongs to the chemokine family that plays important roles in various processes, but the function in BPD is unknown. Elevated serum CXCL17 levels were observed in human premature infants with hyperoxia-induced lung injury, suggesting that CXCL17 might be involved in BPD. To further validate our speculation, studies were conducted in a hyperoxia-induced lung injury mouse model and primary murine alveolar epithelial cells Type II (T2AEC) cells exposed to hyperoxia. RT-qPCR and western blot were used to validate CXCL17 expression in newborn mice. Hyperoxia exposure-induced lung injury was determined by assessing the lung wet-weight/dry-weight ratio and histological changes. Oxidative stress and inflammatory factors were examined by ELISA assay and RT-qPCR. Reactive oxygen species (ROS) level was evaluated by DHE staining. Apoptosis was assessed by TUNEL staining and western blot. The results showed that hyperoxia exposure increased CXCL17 levels in newborn mice pups. Hyperoxia exposure increased lung wet-weight/dry-weight ratio, increased alveolar diameter and enlarged alveoli, and reduced surfactant protein C expression. However, recombinant CXCL17 (rCXCL17) treatment alleviated hyperoxia-induced lung injury. rCXCL17 treatment inhibited hyperoxia-induced inflammation, oxidative stress, and apoptosis in neonatal mice. These results were further verified in T2AEC cells. Additionally, rCXCL17 treatment activated the AKT pathway, which is a protective pathway in BPD. Collectively, rCXCL17 alleviates hyperoxia-induced lung injury in neonatal mice by activating the AKT pathway, indicating that CXCL17 may be a promising target for BPD therapy.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yan Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Jing Hu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Rui Fang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Li-Qi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Li D, Zhang J, Wang L, Yan X, Zi J, Du X, Yu L, Jiang Y. Identification of Pyroptosis-Related Genes Regulating the Progression of Chronic Rhinosinusitis with Nasal Polyps. Int Arch Allergy Immunol 2024; 185:411-424. [PMID: 38402873 DOI: 10.1159/000536371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) is an immunologic disease, and pyroptosis, an inflammation-based cellular death, strictly modulates CRSwNP pathology, whereas the pyroptosis genes and mechanisms involved in CRSwNP remain unclear. Herein, we explored disease biomarkers and potential therapeutic targets for pyroptosis and immune regulation in CRSwNP using bioinformatics analysis and tissue-based verification. METHODS We retrieved the transcriptional profiles of the high-throughput dataset GSE136825 from the Gene Expression Omnibus database, as well as 170 pyroptosis-related gene expressions from GeneCards. Using R, we identified differentially expressed pyroptosis-related genes and examined the potential biological functions of the aforementioned genes using Gene Ontology, Kyoto Encyclopedia of the Genome pathway, immune infiltration, and protein-protein interaction (PPI) network analyses, thereby generating a list of hub genes. The hub genes were, in turn, verified using real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and Western blotting (WB). Ultimately, using the StarBase and miRTarBase databases, we estimated the targeting microRNAs and long chain non-coding RNAs. RESULTS We demonstrated that the identified pyroptosis-related genes primarily modulated bacterial defense activities, as well as inflammasome immune response and assembly. Moreover, they were intricately linked to neutrophil and macrophage infiltration. Furthermore, we validated the tissue contents of hub genes AIM2, NLPR6, and CASP5 and examined potential associations with clinical variables. We also developed a competitive endogenous RNA (ceRNA) modulatory axis to examine possible underlying molecular mechanisms. CONCLUSION We found AIM2, CASP5, and NLRP6, three hub genes for pyroptosis in chronic rhinosinusitis with nasal polyps, by biological analysis, experimental validation, and clinical variable validation.
Collapse
Affiliation(s)
- Danyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China,
| | - Jisheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Yan
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiajia Zi
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyun Du
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Longgang Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Liu J, Yang N, Yi X, Wang G, Wang C, Lin H, Sun L, Wang F, Zhu D. Integration of transcriptomics and metabolomics to reveal the effect of ginsenoside Rg3 on allergic rhinitis in mice. Food Funct 2023; 14:2416-2431. [PMID: 36786409 DOI: 10.1039/d2fo03885d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Increasing studies have demonstrated that ginsenoside Rg3 (Rg3) plays an important role in the prevention and treatment of various diseases, including allergic lower airway inflammation such as asthma. To investigate the role of Rg3 in allergic upper airway disease, the effect and therapeutic mechanism of Rg3 in allergic rhinitis (AR) were studied. Ovalbumin-induced AR model mice were intragastrically administered with Rg3. Nasal symptoms, levels of IgE, IL-4, IL-5, IL-13, SOD and MDA in serum, and histopathological analysis of nasal mucosa were used to evaluate the effect of Rg3 on ameliorating AR in mice. Moreover, nasal mucosa samples from the normal control group, AR model group and high dosage of Rg3 were collected to perform omics analysis. The differentially expressed genes and significantly changed metabolites were screened based on transcriptomics and metabolomics analyses, respectively. Integrative analysis was further performed to confirm the hub genes, metabolites and pathways. After Rg3 intervention, the nasal symptoms and inflammatory infiltration were effectively improved, the levels of IgE, IL-4, IL-5, IL-13 and MDA were significantly reduced, and the level of SOD was obviously increased. The results of the qRT-PCR assay complemented the transcriptomic findings. Integrated analysis showed that Rg3 played an anti-AR role mainly by regulating the interaction network, which was constructed by 12 genes, 8 metabolites and 4 pathways. Our findings suggested that Rg3 had a therapeutic effect on ovalbumin-induced AR in mice by inhibiting inflammation development and reducing oxidative stress. The present study could provide a potential natural agent for the treatment of AR.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Na Yang
- Clinical Pharmacy Department, First Hospital of Jilin University, Changchun 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun 130021, China
| |
Collapse
|
9
|
Bragina EY, Puzyrev VP. Genetic outline of the hermeneutics of the diseases connection phenomenon in human. Vavilovskii Zhurnal Genet Selektsii 2023; 27:7-17. [PMID: 36923482 PMCID: PMC10009484 DOI: 10.18699/vjgb-23-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 03/11/2023] Open
Abstract
The structure of diseases in humans is heterogeneous, which is manifested by various combinations of diseases, including comorbidities associated with a common pathogenetic mechanism, as well as diseases that rarely manifest together. Recently, there has been a growing interest in studying the patterns of development of not individual diseases, but entire families associated with common pathogenetic mechanisms and common genes involved in their development. Studies of this problem make it possible to isolate an essential genetic component that controls the formation of disease conglomerates in a complex way through functionally interacting modules of individual genes in gene networks. An analytical review of studies on the problems of various aspects of the combination of diseases is the purpose of this study. The review uses the metaphor of a hermeneutic circle to understand the structure of regular relationships between diseases, and provides a conceptual framework related to the study of multiple diseases in an individual. The existing terminology is considered in relation to them, including multimorbidity, polypathies, comorbidity, conglomerates, families, "second diseases", syntropy and others. Here we summarize the key results that are extremely useful, primarily for describing the genetic architecture of diseases of a multifactorial nature. Summaries of the research problem of the disease connection phenomenon allow us to approach the systematization and natural classification of diseases. From practical healthcare perspective, the description of the disease connection phenomenon is crucial for expanding the clinician's interpretive horizon and moving beyond narrow, disease-specific therapeutic decisions.
Collapse
Affiliation(s)
- E Yu Bragina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
10
|
Wang M, Gong L, Luo Y, He S, Zhang X, Xie X, Li X, Feng X. Transcriptomic analysis of asthma and allergic rhinitis reveals CST1 as a biomarker of unified airways. Front Immunol 2023; 14:1048195. [PMID: 36733482 PMCID: PMC9888248 DOI: 10.3389/fimmu.2023.1048195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Background Allergic rhinitis (AR) is an important risk factor for the development of asthma. The "unified airway" theory considers the upper and lower airways as a morphological and functional whole. However, studies exploring biomarkers linking the upper and lower airways in allergic disease are lacking, which may provide insight into the mechanisms underlying AR comorbid asthma. Purpose To integrate bioinformatics techniques to explore biomarkers in airway allergic diseases, and to provide a molecular etiology profile for preventing the development of asthma in AR patients. Methods Biomarkers were screened by identifying key genes common between AR and asthma through WGCNA and differential gene analysis. GO and KEGG analyses were performed using DAVID. Immuno-infiltration analysis was performed by CIBERSORTx. The predictive value of CST1 to distinguish Th2-high asthma was determined by ROC curves. GSEA was used to analyze the signaling pathways involved in CST1. TargetScan and miRNet were combined with GSE142237 to construct ceRNA network. CMap was used to explore potential therapeutic drugs. Results Validation of datasets showed that CST1 was the only gene that was up-regulated in both upper and lower airways in patients with AR and asthma, and correlation heatmaps showed that CST1 was the gene with the highest sum of correlation coefficients. GO and KEGG analysis demonstrated that the lower airways of AR patients were mainly involved in inflammatory and immune responses, similar to asthma. Immune infiltration showed that CST1 was mainly positively correlated with activated CD4 memory T cells. According to the ROC curve, CST1 showed excellent diagnostic efficiency for Th2-high asthma. GSEA indicated that CST1 was involved in the FcϵRI signaling pathway and O-glycan biosynthesis. A ceRNA network including the lncRNAs KCNQ1OT1 and NEAT1 was constructed. Four drugs, including verrucarin-A, had the potential to prevent the development of asthma in AR patients. In addition, corticosteroids were found to downregulate CST1 expression. Conclusion CST1 plays a key role in the development of AR comorbid asthma and may be a biomarker for airway allergic diseases. Targeted treatment of CST1 has the potential to prevent the development of asthma in AR patients and deserves further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Feng
- *Correspondence: Xin Feng, ; Xuezhong Li,
| |
Collapse
|