1
|
Huang S, Zeng Z, Chu Y, Zhang S, Zhou J, Hu Z, Yang Y, Zhou C, Cheng W, Yang S, Chen S, Li W, Qing C. Mitigation of lipopolysaccharide-induced intestinal injury in rats by Chimonanthus nitens Oliv. essential oil via suppression of mitochondrial fusion protein mitofusin 2 (MFN2)-mediated mitochondrial-associated endoplasmic reticulum membranes (MAMs) formation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118856. [PMID: 39332614 DOI: 10.1016/j.jep.2024.118856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chimonanthus nitens Oliv. is a traditional Chinese medicine with anti-inflammatory and antioxidant properties that has commonly been used for colds, fevers, and other diseases. However, its role and specific mechanism in sepsis-associated intestinal injury have not been reported. AIM OF THE STUDY C. nitens Oliv. essential oil (CEO), an organic active compound extracted from the traditional Chinese medicine C. nitens Oliv. exhibits notable anti-inflammatory and antioxidant properties. Nevertheless, the therapeutic potential of CEO for septic intestinal injury remains undocumented. This study thus aims to elucidate the anti-inflammatory and antioxidant effects of CEO in the context of acute intestinal injury and to investigate its mechanisms of action in septic rats. MATERIALS AND METHODS Cell and animal models were established using LPS to investigate the impact of CEO on LPS-induced intestinal pathological injury and the secretion of inflammatory factor IL-1β. The effects of CEO on the expression of NLRP3, caspase-1, and MFN2, p-p65 protein were also examined, as well as its influence on oxidative stress injury and mitochondrial-associated endoplasmic reticulum membrane (MAM) formation. Generation of an MFN2 knockout IEC-6 cell line allowed comprehensive investigation of the protective mechanism of CEO. RESULTS In rat models, CEO reduced IL-1β secretion, inhibited caspase-1, ZO-1 expression and NF-κB p65 phosphorylation, while also decreasing malondialdehyde levels and enhancing superoxide dismutase activity in intestinal tissues. Cellular experiments demonstrated its ability to decrease IL-1β secretion; NLRP3, caspase-1, and MFN2 expression; NF-κB p65 phosphorylation; reactive oxygen species (ROS) production, and mitochondrial dysfunction. MFN2 knockdown enhanced these effects synergistically with CEO, indicating potential therapeutic synergy. Further, MFN2 knockdown significantly mitigated LPS-induced NLRP3 and caspase-1 expression, IL-1β secretion, ROS production, NF-κB p65 phosphorylation and MMP reduction in IEC-6 cells, while inhibiting MAM formation and NLRP3 localization on MAMs. Importantly, MFN2 downregulation and CEO synergistically reduced LPS-induced IL-1β secretion and ROS production while inhibiting MAM formation in IEC-6 cells, thus inhibiting NLRP3 inflammasome activation. CONCLUSION CEO mitigates inflammation and oxidative stress by inhibiting MAM formation and is thus a promising intervention for septic intestinal injury.
Collapse
Affiliation(s)
- Shuying Huang
- Department of Reproductive Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Zhenguo Zeng
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China; Key Laboratory of Critical Care Medicine, Jiangxi Provincial Health Commission, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Yuelei Chu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Shichao Zhang
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Jia Zhou
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Zhiguo Hu
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Yuting Yang
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Chaoqi Zhou
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Wang Cheng
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China
| | - Songyu Yang
- The Fourth Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Shengbin Chen
- The Fourth Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| | - Cheng Qing
- Department of Intensive Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330000, China; Key Laboratory of Critical Care Medicine, Jiangxi Provincial Health Commission, 17 Yongwai Zhengjie, Nanchang, 330000, China; Nanchang Key Laboratory of Diagnosis of Infectious Diseases of Nanchang University, Nanchang, Jiangxi, 330096, China.
| |
Collapse
|
2
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. Proc Natl Acad Sci U S A 2025; 122:e2416811122. [PMID: 39854241 PMCID: PMC11789081 DOI: 10.1073/pnas.2416811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood. Through comprehensive phylogenomic analyses with progressively expanded taxonomic sampling, we demonstrate that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with fungal MxF proteins, the largely uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several other eukaryotic lineages, suggesting that Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also find host-encoded and nucleocytoplasmic large DNA viruses-encoded DSPs interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- Cellular Molecular Pharmacology Department, University of California San Francisco, San Francisco, CA94143
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
3
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606855. [PMID: 39149278 PMCID: PMC11326297 DOI: 10.1101/2024.08.06.606855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
First identified in mammals, Mx proteins are potent antivirals against a broad swathe of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), mediating critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. And yet, the evolutionary origins of Mx proteins are poorly understood. Using a series of phylogenomic analyses with stepwise increments in taxonomic coverage, we show that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with previously undescribed fungal MxF proteins, the relatively uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several early-branching eukaryotic lineages. Thus, Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also reveal that host-encoded and NCLDV (nucleocytoplasmic large DNA viruses)-encoded DSPs are interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
- Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
4
|
Li H, Xie Z, Lei X, Chen M, Zheng T, Lin C, Ning Z. TRIM5 inhibits the replication of Senecavirus A by promoting the RIG-I-mediated type I interferon antiviral response. Vet Res 2024; 55:101. [PMID: 39143491 PMCID: PMC11323631 DOI: 10.1186/s13567-024-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024] Open
Abstract
Senecavirus A (SVA) is an emerging virus that poses a threat to swine herds worldwide. To date, the role of tripartite motif 5 (TRIM5) in the replication of viruses has not been evaluated. Here, TRIM5 was reported to inhibit SVA replication by promoting the type I interferon (IFN) antiviral response mediated by retinoic acid-inducible gene I (RIG-I). TRIM5 expression was significantly upregulated in SVA-infected cells, and TRIM5 overexpression inhibited viral replication and promoted IFN-α, IFN-β, interleukin-1beta (IL-1β), IL-6, and IL-18 expression. Conversely, interfering with the expression of TRIM5 had the opposite effect. Viral adsorption and entry assays showed that TRIM5 did not affect the adsorption of SVA but inhibited its entry. In addition, TRIM5 promoted the expression of RIG-I and RIG-I-mediated IFNs and proinflammatory cytokines, and this effect was also proven by inhibiting the expression of TRIM5. These findings expand the scope of knowledge on host factors inhibiting the replication of SVA and indicate that targeting TRIM5 may aid in the development of new agents against SVA.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenxin Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Cunhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
5
|
Li H, Chen M, Zheng T, Lei X, Lin C, Li S, Mo J, Ning Z. IFITM1 and IFITM2 inhibit the replication of senecavirus A by positive feedback with RIG-I signaling pathway. Vet Microbiol 2024; 292:110050. [PMID: 38484578 DOI: 10.1016/j.vetmic.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
The role of host factors in the replication of emerging senecavirus A (SVA) which induced porcine idiopathic vesicular disease (PIVD) distributed worldwide remains obscure. Here, interferon-induced transmembrane (IFITM) protein 1 and 2 inhibit SVA replication by positive feedback with RIG-I signaling pathway was reported. The expression levels of IFITM1 and IFITM2 increased significantly in SVA infected 3D4/21 cells. Infection experiments of cells with over and interference expression of IFITM1 and IFITM2 showed that these two proteins inhibit SVA replication by regulating the expression of interferon beta (IFN-β), IFN-stimulated gene 15 (ISG-15), interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-α), IFN regulatory factor-3 (IRF3), and IRF7. Further results showed that antiviral responses of IFITM1 and IFITM2 were achieved by activating retinoic acid-inducible gene I (RIG-I) signaling pathway which in turn enhanced the expression of IFITM1 and IFITM2. It is noteworthy that conserved domains of these two proteins also paly the similar role. These findings provide new data on the role of host factors in infection and replication of SVA and help to develop new agents against the virus.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cunhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiacong Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| |
Collapse
|
6
|
Zhang B, Zhong Y, Du J, Ye R, Fan B, Deng Y, Bai R, Feng Y, Yang X, Huang Y, Liang B, Zheng J, Rong W, Yang X, Huang Z. 1,2-Dichloroethane induces testicular pyroptosis by activating piR-mmu-1019957/IRF7 pathway and the protective effects of melatonin. ENVIRONMENT INTERNATIONAL 2024; 184:108480. [PMID: 38341879 DOI: 10.1016/j.envint.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.
Collapse
Affiliation(s)
- Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiewei Zheng
- Department of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Weifeng Rong
- Institute of Chemical Surveillance, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Song Y, Wang L, Xu M, Lu X, Wang Y, Zhang L. Molecular and functional characterization of porcine poly C binding protein 1 (PCBP1). BMC Vet Res 2024; 20:25. [PMID: 38218813 PMCID: PMC10787444 DOI: 10.1186/s12917-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Poly C Binding Protein 1 (PCBP1) belongs to the heterogeneous nuclear ribonucleoprotein family. It is a multifunctional protein that participates in several functional circuits and plays a variety of roles in cellular processes. Although PCBP1 has been identified in several mammals, its function in porcine was unclear. RESULTS In this study, we cloned the gene of porcine PCBP1 and analyzed its evolutionary relationships among different species. We found porcine PCBP1 protein sequence was similar to that of other animals. The subcellular localization of PCBP1 in porcine kidney cells 15 (PK-15) cells was analyzed by immunofluorescence assay (IFA) and revealed that PCBP1 was mainly localized to the nucleus. Reverse transcription-quantitative PCR (RT-qPCR) was used to compare PCBP1 mRNA levels in different tissues of 30-day-old pigs. Results indicated that PCBP1 was expressed in various tissues and was most abundant in the liver. Finally, the effects of PCBP1 on cell cycle and apoptosis were investigated following its overexpression or knockdown in PK-15 cells. The findings demonstrated that PCBP1 knockdown arrested cell cycle in G0/G1 phase, and enhanced cell apoptosis. CONCLUSIONS Porcine PCBP1 is a highly conserved protein, plays an important role in determining cell fate, and its functions need further study.
Collapse
Affiliation(s)
- Yue Song
- Molecule Biology Laboratory of Zhengzhou Normal University, Zhengzhou Henan, 450044, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Linqing Wang
- Molecule Biology Laboratory of Zhengzhou Normal University, Zhengzhou Henan, 450044, China.
| | - Menglong Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiuxiang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yumin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Limeng Zhang
- Molecule Biology Laboratory of Zhengzhou Normal University, Zhengzhou Henan, 450044, China
| |
Collapse
|
8
|
Huang D, Chen S, Xiong D, Wang H, Zhu L, Wei Y, Li Y, Zou S. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. Aging Dis 2023; 14:1511-1532. [PMID: 37196113 PMCID: PMC10529762 DOI: 10.14336/ad.2023.0201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li WX, Wang XH, Lin YJ, Zhou YY, Li J, Zhang XY, Chen XH. Large yellow croaker ( Larimichthys crocea) mitofusin 2 inhibits type I IFN responses by degrading MAVS via enhanced K48-linked ubiquitination. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:359-372. [PMID: 37637256 PMCID: PMC10449736 DOI: 10.1007/s42995-023-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
UNLABELLED In mammals, mitofusin 2 (MFN2) is involved in mitochondrial fusion, and suppresses the virus-induced RIG-I-like receptor (RLR) signaling pathway. However, little is known about the function of MFN2 in non-mammalian species. In the present study, we cloned an MFN2 ortholog (LcMFN2) in large yellow croaker (Larimichthys crocea). Phylogenetic analysis showed that MFN2 emerged after the divergence of amphioxus and vertebrates. The protein sequences of MFN2 were well conserved from fish to mammals. LcMFN2 was expressed in all the tissues/organs examined at different levels, and its expression was upregulated in response to poly(I:C) stimulation. Overexpression of LcMFN2 inhibited MAVS-induced type I interferon (IFN) promoter activation and antiviral gene expression. In contrast, knockdown of endogenous LcMFN2 enhanced poly(I:C) induced production of type I IFNs. Additionally, LcMFN2 enhanced K48-linked polyubiquitination of MAVS, promoting its degradation. Also, overexpression of LcMFN2 impaired the cellular antiviral response, as evidenced by the increased expression of viral genes and more severe cytopathic effects (CPE) in cells infected with spring viremia of carp virus (SVCV). These results indicated that LcMFN2 inhibited type I IFN response by degrading MAVS, suggesting its negative regulatory role in cellular antiviral response. Therefore, our study sheds a new light on the regulatory mechanisms of the cellular antiviral response in teleosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42995-023-00189-8.
Collapse
Affiliation(s)
- Wen-Xing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiao-Hong Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Jun Lin
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuan-Yuan Zhou
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI 49783 USA
| | - Xiang-Yang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xin-Hua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| |
Collapse
|
10
|
Guo W, Mu K, Li WS, Gao SX, Wang LF, Li XM, Zhao JY. Identification of mitochondria-related key gene and association with immune cells infiltration in intervertebral disc degeneration. Front Genet 2023; 14:1135767. [PMID: 36968589 PMCID: PMC10030706 DOI: 10.3389/fgene.2023.1135767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its inflammatory microenvironment can result in discogenic pain, which has been shown to stem from the nucleus pulposus (NP). Increasing evidence suggests that mitochondrial related genes are strictly connected to cell functionality and, importantly, it can regulate cell immune activity in response to damaged associated signals. Therefore, identification of mitochondria related genes might offer new diagnostic markers and therapeutic targets for IVD degeneration. In this study, we identified key genes involved in NP tissue immune cell infiltration during IVD degeneration by bioinformatic analysis. The key modules were screened by weighted gene co-expression network analysis (WCGNA). Characteristic genes were identified by random forest analysis. Then gene set enrichment analysis (GSEA) was used to explore the signaling pathways associated with the signature genes. Subsequently, CIBERSORT was used to classify the infiltration of immune cells. Function of the hub gene was confirmed by PCR, Western blotting and ELISA. Finally, we identified MFN2 as a crucial molecule in the process of NP cell pyroptosis and NLRP3 inflammasome activation. We speculate that the increased MFN2 expression in NP tissue along with the infiltration of CD8+ T cells, NK cell and neutrophils play important roles in the pathogenesis of IVD degeneration.
Collapse
Affiliation(s)
- Wei Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| | - Kun Mu
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
- Department of Breast Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
| | - Wen-Shuai Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shun-Xing Gao
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| | - Lin-Feng Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lin-Feng Wang, ; Xiao-Ming Li,
| | - Xiao-Ming Li
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
- *Correspondence: Lin-Feng Wang, ; Xiao-Ming Li,
| | - Jian-Yong Zhao
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, China
| |
Collapse
|