1
|
Qi L, Wang S, Guo T, Qi Z, Wu S, Gao D, Yan Z, Tan B, Yang A. Mechanism of Qingdai in Alleviating Acute Lung Injury by Inhibiting the JAK2/STAT3 Signaling Pathway. J Inflamm Res 2024; 17:11403-11417. [PMID: 39722733 PMCID: PMC11669285 DOI: 10.2147/jir.s498299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Qingdai (QD) is a traditional Chinese medicine (TCM) commonly used in clinical practice to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the mechanisms underlying the effects of QD remain not fully understood. This investigation demonstrated QD alleviated LPS-induced ALI in mice and exerted anti-inflammatory effects by inhibiting the JAK2/STAT3 signaling pathway. Methods The active compounds of QD were identified through UPLC-LTQ-Orbitrap-MS/MS. Network pharmacology predicted potential pharmacological targets and the signaling pathways contributed to the effectiveness of QD in treating ALI. Molecular docking assessed the binding of active components to critical targets. ALI mice triggered by Lipopolysaccharides (LPS) were used for transcriptomic analysis to assess alterations in pulmonary gene expression. The pathological changes of lung tissue were analyzed via HE staining. Proinflammatory cytokine levels in serum were measured using ELISA, and the mRNA expression was measured by RT-qPCR. Western blot analysis evaluated protein expression related to the JAK2/STAT3 signaling pathway. Additionally, RAW264.7 cells induced by LPS were treated with QD to measure proinflammatory cytokines and JAK2/STAT3 signaling pathway protein expression. Results Six major components of QD were identified. Network pharmacology predicted JAK2 and STAT3 as targets for QD in ALI treatment, with KEGG analysis highlighting the JAK/STAT signaling pathway. Transcriptomics confirmed the JAK/STAT signaling pathway in the therapeutic effects of QD. Molecular docking demonstrated high binding affinities of bisindigotin, isoindigo, and 6-(3-oxoindolin-2-ylidene)indolo[2,1-b]quinazolin-12-one (IQO) to JAK2 and STAT3. In vivo, QD reduced lung inflammation, downregulated proinflammatory cytokines, and inhibited JAK2/STAT3 signaling pathway. In vitro, QD mitigated LPS-triggered inflammatory responses in RAW264.7 macrophages by inhibiting the same pathway. Conclusion The therapeutic effects of QD in ALI might be mediated by the modulation of the JAK2/STAT3 signaling pathway, which may make it a valuable therapeutic strategy for ALI/ARDS.
Collapse
Affiliation(s)
- Lu Qi
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, 443003, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Shun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tao Guo
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhuocao Qi
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Suwan Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Dan Gao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhiqiang Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Aidong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
2
|
Zheng S, Xue C, Xue T, Li S, Zao X, Li X, Cao X, Chen Y, Qi W, Wang W, Zhang P, Ye Y. Research Progress of Chinese Medicine in Treating Chronic Liver Disease by Regulating Autophagy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2053-2077. [PMID: 39614413 DOI: 10.1142/s0192415x24500794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
In recent years, rising living standards and an accelerated lifestyle have led to an increase in the incidence of chronic liver disease. Modern medicine has yet to fully develop effective methods for preventing and treating these conditions due to their complex pathogenesis. Autophagy, a cellular process that maintains homeostasis by removing abnormal proteins, has emerged as a promising therapeutic target for chronic liver diseases. These diseases include liver fibrosis, liver cirrhosis, non-alcoholic steatohepatitis, chronic hepatitis B, and hepatocellular carcinoma. Chinese medicine, with its multi-component, multi-target, and multi-pathway approach, offers unique advantages in treating these conditions, especially given the unclear etiology of chronic liver diseases. Recent research demonstrates that Chinese medicine - comprising single herbs, herbal combinations, and proprietary formulas - can effectively regulate autophagy, thereby providing therapeutic and preventive benefits for chronic liver diseases. This paper reviews recent studies, categorizes various chronic liver diseases, and examines the impact of active ingredients and compound formulas from Chinese medicine on autophagy. These insights are crucial for slowing the progression of chronic liver diseases and pave the way for the future application of Chinese medicine in preventing and managing these conditions through autophagy modulation.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Tianyu Xue
- Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, P. R. China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
3
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Wang J, Jia B, Miao J, Li D, Wang Y, Han L, Yuan Y, Zhang Y, Wang Y, Guo L, Jia J, Zheng F, Lai S, Niu K, Li W, Bian Y, Wang Y. An novel effective and safe model for the diagnosis of nonalcoholic fatty liver disease in China: gene excavations, clinical validations, and mechanism elucidation. J Transl Med 2024; 22:624. [PMID: 38965537 PMCID: PMC11225259 DOI: 10.1186/s12967-024-05315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).
Collapse
Affiliation(s)
- Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jing Miao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Dun Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liying Guo
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Sizhen Lai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Kaijun Niu
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Yaogang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X, Yu W. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy 2024; 20:1114-1133. [PMID: 38037248 PMCID: PMC11135866 DOI: 10.1080/15548627.2023.2287930] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Renal fibrosis is a typical pathological change in chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) is the predominant stage. Activation of macroautophagy/autophagy plays a crucial role in the process of EMT. Lycopene (LYC) is a highly antioxidant carotenoid with pharmacological effects such as anti-inflammation, anti-apoptosis and mediation of autophagy. In this study, we demonstrated the specific mechanism of LYC in activating mitophagy and improving renal fibrosis. The enrichment analysis results of GO and KEGG showed that LYC had high enrichment values with autophagy. In this study, we showed that LYC alleviated aristolochic acid I (AAI)-induced intracellular expression of PINK1, TGFB/TGF-β, p-SMAD2, p-SMAD3, and PRKN/Parkin, recruited expression of MAP1LC3/LC3-II and SQSTM1/p62, decreased mitochondrial membrane potential (MMP), and ameliorated renal fibrosis in mice. When we simultaneously intervened NRK52E cells using bafilomycin A1 (Baf-A1), AAI, and LYC, intracellular MAP1LC3-II and SQSTM1 expression was significantly increased. A similar result was seen in renal tissue and cells when treated in vitro and in vivo with CQ, AAI, and LYC, and the inhibitory effect of LYC on the AAI-activated SMAD2-SMAD3 signaling pathway was attenuated. Molecular docking simulation experiments showed that LYC stably bound to the AKT active site. After intervention of cells with AAI and GSK-690693, the expression of PINK1, PRKN, MAP1LC3-II, BECN1, p-SMAD2 and p-SMAD3 was increased, and the expression of SQSTM1 was decreased. However, SC79 inhibited autophagy and reversed the inhibitory effect of LYC on EMT. The results showed that LYC could inhibit the AKT signaling pathway to activate mitophagy and reduce renal fibrosis.Abbreviation: AA: aristolochic acid; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB: actin beta; AKT/protein kinase B: thymoma viral proto-oncogene; BAF-A1: bafilomycin A1; BECN1: beclin 1, autophagy related; CCN2/CTGF: cellular communication network factor 2; CDH1/E-Cadherin: cadherin 1; CKD: chronic kidney disease; COL1: collagen, type I; COL3: collagen, type III; CQ: chloroquine; ECM: extracellular matrix; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; LYC: lycopene; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase ; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PPI: protein-protein interaction; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1/p62: sequestosome 1; TGFB/TGFβ: transforming growth factor, beta; VIM: vimentin.
Collapse
Affiliation(s)
- Yu Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhenlei Ping
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongxin Gao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhihui Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyang Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of Animal Pathogenesis and Comparative Medicine in Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Li X, Huang L, Xiao J, Zhang X. Pharmacokinetic study of multicomponent in Hong-Hua-Xiao-Yao tablet. Biomed Chromatogr 2024; 38:e5830. [PMID: 38445357 DOI: 10.1002/bmc.5830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 03/07/2024]
Abstract
Hong-Hua-Xiao-Yao tablet (HHXYT) is attracting attention increasingly because of its use in treatment of mammary gland hyperplasia (MGH) and menopausal syndrome. However, its pharmacokinetics remains unclear. This study developed a sensitive and rapid method for simultaneous determination of 10 compounds of HHXYT in rat plasma by liquid chromatography-tandem mass spectrometry and to compare the pharmacokinetics of these compounds in MGH rats and sham operated rats. The linearity, accuracy, precision, stability and matrix effect were within acceptable ranges. This established method was successfully applied to a pharmacokinetics study of 10 compounds in sham operated and MGH rats. According to the results, the bioavailability of glycyrrhetinic acid was highest in MGH rats and sham operated rats. The mean residence times of glycyrrhetinic acid and glycyrrhetinic acid 3-O-glucuronide were higher than those of the other compounds while the mean residence time and half-life of liquiritin, isoliquiritin and paeoniflorin were lower. Some pharmacokinetic parameters of ormononetin, liquiritigenin, isoliquiritigenin, liquiritin, isoliquiritin, paeoniflorin, protocatechuic acid and senkyunolide I were significantly different between MGH rats and sham operated rats. This study elucidated the dynamic changes of multiple components in rats after oral administration of HHXYT systematically and comprehensively, which provided guidance for clinical application.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Pharmacy, Fudan University, Shanghai, China
- Jiangxi Puzheng Pharmaceutical Co., Ltd., Jian, China
| | - Leyi Huang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co., Ltd., Jian, China
| | - Xuemei Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Xu Z, Man SS, Gong BY, Li ZD, Zhou HF, Peng YF, Zhao SW, Hou YL, Wang L, Bian YH. Bazi Bushen maintains intestinal homeostasis through inhibiting TLR4/NFκB signaling pathway and regulating gut microbiota in SAMP6 mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7273-7283. [PMID: 37450639 DOI: 10.1002/jsfa.12812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related β-galactosidase (SA-β-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-β-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan-Shan Man
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Bo-Yang Gong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao-Dong Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui-Fang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu-Wu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Long Hou
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Li Wang
- Pharmaceutical Department, Tianjin Second People's Hospital, Tianjin, China
| | - Yu-Hong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Xu Z, Gong B, Li Z, Wang Y, Zhao Z, Xie L, Peng Y, Zhao S, Zhou H, Bian Y. Bazi Bushen alleviates skin senescence by orchestrating skin homeostasis in SAMP6 mice. J Cell Mol Med 2023; 27:2651-2660. [PMID: 37614114 PMCID: PMC10494291 DOI: 10.1111/jcmm.17833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 08/25/2023] Open
Abstract
Bazi Bushen, a Chinese-patented drug with the function of relieving fatigue and delaying ageing, has been proven effective for extenuating skin senescence. To investigate the potential mechanism, senescence-accelerated mouse prone 6 (SAMP6) was intragastrically administered with Bazi Bushen for 9 weeks to induce skin homeostasis. Skin homeostasis is important in mitigating skin senescence, and it is related to many factors such as oxidative stress, SASP, apoptosis, autophagy and stem cell. In our study, skin damage in SAMP6 mice was observed using HE, Masson and SA-β-gal staining. The content of hydroxyproline and the activities of SOD, MDA, GSH-PX and T-AOC in the skin were measured using commercial assay kits. The level of SASP factors (IL-6, IL-1β, TNF-α, MMP2 and MMP9) in skin were measured using ELISA kits. The protein expressions of p16, p21, p53, Bax, Bcl-2, Cleaved caspase-3, LC3, p62, Beclin1, OCT4, SOX2 and NANOG were measured by western blotting. The expression of ITGA6 and COL17A1 was measured by immunofluorescence staining and western blotting. Our findings demonstrated that Bazi Bushen alleviated skin senescence by orchestrating skin homeostasis, reducing the level of oxidative stress and the expression of SASP, regulating the balance of apoptosis and autophagy and enhancing the protein expressions of ITGA6 and COL17A1 to improve skin structure in SAMP6 mice. This study indicated that Bazi Bushen could serve as a potential therapy for alleviating skin senescence.
Collapse
Affiliation(s)
- Zhe Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Boyang Gong
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhaodong Li
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zeyu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lulu Xie
- School of MedicineNankai UniversityTianjinChina
| | - Yanfei Peng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shuwu Zhao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Huifang Zhou
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuhong Bian
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
10
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
11
|
Mito R, Iriki T, Fujiwara Y, Pan C, Ikeda T, Nohara T, Suzuki M, Sakagami T, Komohara Y. Onionin A inhibits small-cell lung cancer proliferation through suppressing STAT3 activation induced by macrophages-derived IL-6 and cell-cell interaction with tumor-associated macrophage. Hum Cell 2023; 36:1068-1080. [PMID: 36961655 PMCID: PMC10110690 DOI: 10.1007/s13577-023-00895-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Tumor-associated macrophage (TAM)-derived IL-6 is involved in small-cell lung cancer (SCLC) progression and chemoresistance via the activation of signal transducer and activator of transcription 3 (STAT3) in the tumor microenvironment. This study aimed to identify natural compounds that suppress cell-cell interactions between TAMs and SCLC cells by inhibiting STAT3 activation. We used a library of natural compounds to identify candidate agents possessing anti-SCLC effects by inhibiting macrophage-induced tumor proliferation. SBC-3 and SBC-5, human SCLC cell lines, were used for in vitro experiments. Furthermore, we assessed the efficacy of these candidate agents in a murine xenograft model of human SCLC. Among the natural compounds examined, onionin A (ONA) inhibited IL-6-induced STAT3 activation and SCLC cell proliferation. ONA also reduced the secretion of IL-6 from macrophages and interfered with the direct effect of cell-cell interactions between macrophages and SCLC cells. Furthermore, ONA administration suppressed tumor progression in a tumor-bearing mouse model. ONA was identified as the most useful candidate for targeting cell-cell interactions between cancer cells and TAMs for anti-SCLC therapy.
Collapse
Affiliation(s)
- Remi Mito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Toyohisa Iriki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan.
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Ikeda
- Department of Natural Medicine, Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Toshihiro Nohara
- Department of Natural Medicine, Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-Ku, Kumamoto, 860-0082, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| |
Collapse
|
12
|
Xiao Z, Liu M, Yang F, Liu G, Liu J, Zhao W, Ma S, Duan Z. Programmed cell death and lipid metabolism of macrophages in NAFLD. Front Immunol 2023; 14:1118449. [PMID: 36742318 PMCID: PMC9889867 DOI: 10.3389/fimmu.2023.1118449] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has now become the leading chronic liver disease worldwide with lifestyle changes. This may lead to NAFLD becoming the leading cause of end-stage liver disease in the future. To date, there are still no effective therapeutic drugs for NAFLD. An in-depth exploration of the pathogenesis of NAFLD can help to provide a basis for new therapeutic agents or strategies. As the most important immune cells of the liver, macrophages play an important role in the occurrence and development of liver inflammation and are expected to become effective targets for NAFLD treatment. Programmed cell death (PCD) of macrophages plays a regulatory role in phenotypic transformation, and there is also a certain connection between different types of PCD. However, how PCD regulates macrophage polarization has still not been systematically elucidated. Based on the role of lipid metabolic reprogramming in macrophage polarization, PCD may alter the phenotype by regulating lipid metabolism. We reviewed the effects of macrophages on inflammation in NAFLD and changes in their lipid metabolism, as well as the relationship between different types of PCD and lipid metabolism in macrophages. Furthermore, interactions between different types of PCD and potential therapeutic agents targeting of macrophages PCD are also explored.
Collapse
Affiliation(s)
- Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangwei Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangkai Liu
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suping Ma
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Suping Ma, ; Zhongping Duan,
| | - Zhongping Duan
- Beijing Institute of Hepatology, Beijing Youan Hospital Capital Medical University, Beijing, China,*Correspondence: Suping Ma, ; Zhongping Duan,
| |
Collapse
|