1
|
Tapela K, Prah DA, Tetteh B, Nuokpem F, Dosoo D, Coker A, Kumi-Ansah F, Amoako E, Assah KO, Kilba C, Nyakoe N, Quansah D, Languon S, Anyigba CA, Ansah F, Agyeman S, Owusu IA, Schneider K, Ampofo WK, Mutungi JK, Amegatcher G, Aniweh Y, Awandare GA, Quashie PK, Bediako Y. Cellular immune response to SARS-CoV-2 and clinical presentation in individuals exposed to endemic malaria. Cell Rep 2024; 43:114533. [PMID: 39052480 PMCID: PMC11372439 DOI: 10.1016/j.celrep.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Ghana and other parts of West Africa have experienced lower COVID-19 mortality rates than other regions. This phenomenon has been hypothesized to be associated with previous exposure to infections such as malaria. This study investigated the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influence of previous malaria exposure. Blood samples were collected from individuals with asymptomatic or symptomatic COVID-19 (n = 217). A variety of assays were used to characterize the SARS-CoV-2-specific immune response, and malaria exposure was quantified using Plasmodium falciparum ELISA. The study found evidence of attenuated immune responses to COVID-19 among asymptomatic individuals, with elevated proportions of non-classical monocytes and greater memory B cell activation. Symptomatic patients displayed higher P. falciparum-specific T cell recall immune responses, whereas asymptomatic individuals demonstrated elevated P. falciparum antibody levels. Summarily, this study suggests that P. falciparum exposure-associated immune modulation may contribute to reduced severity of SARS-CoV-2 infection among people living in malaria-endemic regions.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Franklin Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Amin Coker
- Accident and Emergency Unit, The Greater Accra Regional Hospital, Accra, Ghana
| | | | - Emmanuella Amoako
- Department of Pediatrics, Cape Coast Teaching Hospital, Cape Coast, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Kissi Ohene Assah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Charlyne Kilba
- Department of Internal Medicine, Surgery, Pediatrics, and Emergency Medicine, Greater Accra Regional Hospital, Accra, Ghana
| | - Nancy Nyakoe
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Seth Agyeman
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kristan Schneider
- Department of Mathematics, Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany
| | - William K Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joe Kimanthi Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Science, School of Biomedical and Allied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
2
|
Mohamed AH, Eltyeb E, Said B, Eltayeb R, Algaissi A, Hober D, Alhazmi AH. COVID-19 and malaria co-infection: a systematic review of clinical outcomes in endemic areas. PeerJ 2024; 12:e17160. [PMID: 38646476 PMCID: PMC11032658 DOI: 10.7717/peerj.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Background COVID-19 and malaria cause significant morbidity and mortality globally. Co-infection of these diseases can worsen their impact on public health. This review aims to synthesize literature on the clinical outcomes of COVID-19 and malaria co-infection to develop effective prevention and treatment strategies. Methods A comprehensive literature search was conducted using MeSH terms and keywords from the start of the COVID-19 pandemic to January 2023. The review included original articles on COVID-19 and malaria co-infection, evaluating their methodological quality and certainty of evidence. It was registered in PROSPERO (CRD42023393562). Results Out of 1,596 screened articles, 19 met the inclusion criteria. These studies involved 2,810 patients, 618 of whom had COVID-19 and malaria co-infection. Plasmodium falciparum and vivax were identified as causative organisms in six studies. Hospital admission ranged from three to 18 days. Nine studies associated co-infection with severe disease, ICU admission, assisted ventilation, and related complications. One study reported 6% ICU admission, and mortality rates of 3%, 9.4%, and 40.4% were observed in four studies. Estimated crude mortality rates were 10.71 and 5.87 per 1,000 person-days for patients with and without concurrent malaria, respectively. Common co-morbidities included Diabetes mellitus, hypertension, cardiovascular diseases, and respiratory disorders. Conclusion Most patients with COVID-19 and malaria co-infection experienced short-term hospitalization and mild to moderate disease severity. However, at presentation, co-morbidities and severe malaria were significantly associated with higher mortality or worse clinical outcomes. These findings emphasize the importance of early detection, prompt treatment, and close monitoring of patients with COVID-19 and malaria co-infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Didier Hober
- Univ Lille, CHU Lille Laboratoire de Virologie ULR3610, Lille, France
| | | |
Collapse
|
3
|
Akoolo L, Rocha SC, Parveen N. Protozoan co-infections and parasite influence on the efficacy of vaccines against bacterial and viral pathogens. Front Microbiol 2022; 13:1020029. [PMID: 36504775 PMCID: PMC9732444 DOI: 10.3389/fmicb.2022.1020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
A wide range of protozoan pathogens either transmitted by vectors (Plasmodium, Babesia, Leishmania and Trypanosoma), by contaminated food or water (Entamoeba and Giardia), or by sexual contact (Trichomonas) invade various organs in the body and cause prominent human diseases, such as malaria, babesiosis, leishmaniasis, trypanosomiasis, diarrhea, and trichomoniasis. Humans are frequently exposed to multiple pathogens simultaneously, or sequentially in the high-incidence regions to result in co-infections. Consequently, synergistic or antagonistic pathogenic effects could occur between microbes that also influences overall host responses and severity of diseases. The co-infecting organisms can also follow independent trajectory. In either case, co-infections change host and pathogen metabolic microenvironments, compromise the host immune status, and affect microbial pathogenicity to influence tissue colonization. Immunomodulation by protozoa often adversely affects cellular and humoral immune responses against co-infecting bacterial pathogens and promotes bacterial persistence, and result in more severe disease symptoms. Although co-infections by protozoa and viruses also occur in humans, extensive studies are not yet conducted probably because of limited animal model systems available that can be used for both groups of pathogens. Immunosuppressive effects of protozoan infections can also attenuate vaccines efficacy, weaken immunological memory development, and thus attenuate protection against co-infecting pathogens. Due to increasing occurrence of parasitic infections, roles of acute to chronic protozoan infection on immunological changes need extensive investigations to improve understanding of the mechanistic details of specific immune responses alteration. In fact, this phenomenon should be seriously considered as one cause of breakthrough infections after vaccination against both bacterial and viral pathogens, and for the emergence of drug-resistant bacterial strains. Such studies would facilitate development and implementation of effective vaccination and treatment regimens to prevent or significantly reduce breakthrough infections.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Biorepository and Tissue Research Facility, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sandra C. Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States,*Correspondence: Nikhat Parveen,
| |
Collapse
|