1
|
Lee SM, Lee J, Kim DI, Avila JP, Nakaya H, Kwak K, Kim EH. Emulsion adjuvant-induced uric acid release modulates optimal immunogenicity by targeting dendritic cells and B cells. NPJ Vaccines 2025; 10:72. [PMID: 40240376 PMCID: PMC12003798 DOI: 10.1038/s41541-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Squalene-based emulsion (SE) adjuvants like MF59 and AS03 are used in protein subunit vaccines against influenza virus (e.g., Fluad, Pandemrix, Arepanrix) and SARS-CoV-2 (e.g., Covifenz, SKYCovione). We demonstrate the critical role of uric acid (UA), a damage-associated molecular pattern (DAMP), in triggering immunogenicity by SE adjuvants. In mice, SE adjuvants elevated DAMP levels in draining lymph nodes. Strikingly, inhibition of UA synthesis reduced vaccine-induced innate immunity, subsequently impairing optimal antibody and T cell responses. In vivo treatment with UA crystals elicited partial adjuvant effects. In vitro stimulation with UA crystals augmented the activation of dendritic cells (DCs) and B cells and altered multiple pathways in these cells, including inflammation and antigen presentation in DCs and cell proliferation in B cells. In an influenza vaccine model, UA contributed to protection against influenza viral infection. These results demonstrate the importance of DAMPs, specifically the versatile role of UA in the immunogenicity of SE adjuvants, by regulating DCs and B cells.
Collapse
Affiliation(s)
- Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Junghwa Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Dong-In Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Jonathan P Avila
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helder Nakaya
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea.
- Department of Advanced Drug discovery & development, University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
2
|
Zhao Z, Hu Y, Li H, Lu T, He X, Ma Y, Huang M, Li M, Yang L, Shi C. Inhibition of stromal MAOA leading activation of WNT5A enhance prostate cancer immunotherapy by involving the transition of cancer-associated fibroblasts. J Immunother Cancer 2025; 13:e010555. [PMID: 40121032 PMCID: PMC11931948 DOI: 10.1136/jitc-2024-010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The interaction between stromal cells and the tumor immune microenvironment (TIME) is acknowledged as a critical driver in the progression of prostate cancer (PCa). Monoamine oxidase A (MAOA), a mitochondrial enzyme that catalyzes the degradation of monoamine neurotransmitters and dietary amines, has been linked to the promotion of prostate tumorigenesis, particularly when upregulated in stromal cells. However, the detailed mechanisms of MAOA's interaction with TIME have not been fully elucidated. METHODS We reanalyzed a single-cell sequencing dataset to evaluate the role of MAOA in the stroma, verify the impact of stromal MAOA alterations on CD8+ T cell responses by co-culturing stromal cells and immune cells in vitro. Furthermore, C57BL/6J mouse subcutaneous transplant tumor models and dual humanized mouse models were established to investigate the function of MAOA in vivo and the potential of its inhibitors for immunotherapy. RESULTS Our study demonstrates that inhibiting MAOA in stromal cells facilitates the conversion of myofibroblastic cancer-associated fibroblasts (myCAFs), thereby improving the immunosuppressive environment of PCa. The strategic combination of MAOA inhibition with immune checkpoint inhibitors elicits a synergistic antitumor effect. Specifically, MAOA inhibition in stromal cells leads to increased production of WNT5A, which subsequently activates the cytotoxic capacity of CD8+ T cells through the Ca2+-NFATC1 signaling pathway. CONCLUSIONS Our findings highlight the critical role of MAOA in modulating cancer-associated fibroblasts within the PCa immune microenvironment, presenting a novel therapeutic strategy to augment the efficacy of immunotherapy for PCa.
Collapse
Affiliation(s)
- Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinglin He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minli Huang
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyao Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhong Shi
- Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Wu M, Shi Y, Liu Y, Huang H, Che J, Shi J, Xu C. Exosome-transmitted podoplanin promotes tumor-associated macrophage-mediated immune tolerance in glioblastoma. CNS Neurosci Ther 2024; 30:e14643. [PMID: 38470096 PMCID: PMC10929222 DOI: 10.1111/cns.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
AIMS Glioblastoma is the most frequent and aggressive primary brain tumor, characterized by rapid disease course and poor treatment responsiveness. The abundance of immunosuppressive macrophages in glioblastoma challenges the efficacy of novel immunotherapy. METHODS Bulk RNA-seq and single-cell RNA-seq of glioma patients from public databases were comprehensively analyzed to illustrate macrophage infiltration patterns and molecular characteristics of podoplanin (PDPN). Multiplexed fluorescence immunohistochemistry staining of PDPN, GFAP, CD68, and CD163 were performed in glioma tissue microarray. The impact of PDPN on macrophage immunosuppressive polarization was investigated using a co-culture system. Bone marrow-derived macrophages (BMDMs) and OT-II T cells isolated from BALB/c and OT-II mice respectively were co-cultured to determine T-cell adherence. Pathway alterations were probed through RNA sequencing and western blot analyses. RESULTS Our findings demonstrated that PDPN is notably correlated with the expression of CD68 and CD163 in glioma tissues. Additionally, macrophages phagocytosing PDPN-containing EVs (EVsPDPN ) from GBM cells presented increased CD163 expression and augmented secretion of immunoregulatory cytokine (IL-6, IL-10, TNF-α, and TGF-β1). PDPN within EVs was also associated with enhanced phagocytic activity and reduced MHC II expression in macrophages, compromising CD4+ T-cell activation. CONCLUSIONS This investigation underscores that EVsPDPN derived from glioblastoma cells contributes to M2 macrophage-mediated immunosuppression and is a potential prognostic marker and therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Mengwan Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Jinfeng LaboratoryChongqingChina
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated HospitalNanchang UniversityNanchangChina
| | - Jiajia Che
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Jing Shi
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Jinfeng LaboratoryChongqingChina
| |
Collapse
|
4
|
Ji XF, Zhou Q, Wang JW, Sun F, Gao S, Wang K. Associations of Wnt5a expression with liver injury in chronic hepatitis B virus infection. BMC Infect Dis 2023; 23:860. [PMID: 38062395 PMCID: PMC10704684 DOI: 10.1186/s12879-023-08865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.
Collapse
Affiliation(s)
- Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Qi Zhou
- Department of Pediatric Surgery, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Fei Sun
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Hepatology Institute of Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Maity S, Sengupta S, Sen M. Therapeutic potential of rWnt5A in curbing Leishmania donovani infection. Infect Immun 2023; 91:e0026723. [PMID: 37725061 PMCID: PMC10580910 DOI: 10.1128/iai.00267-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023] Open
Abstract
In view of the antagonism of Wnt5A signaling toward microbial pathogens, we were interested in evaluating the therapeutic potential of recombinant Wnt5A (rWnt5A) in curbing Leishmania donovani infection. Initially, using L. donovani-infected RAW 264.7 and peritoneal macrophages, we demonstrated that application of rWnt5A as opposed to the vehicle control to the infected cells significantly dampens L. donovani infection. Inhibition of infection was associated with increase in cell-associated reactive oxygen species (ROS), and blocked by the ROS production inhibitor diphenylene iodonium chloride (DPI). rWnt5A, but not the vehicle control (PBS: phosphate-buffered saline) administration to L. donovani-infected mice appreciably reduced the infection load, and inhibited disease progression as evident from the preservation of splenic white pulp architecture. rWnt5A administration, moreover, led to elevation of both cell-associated ROS and the activation of splenic T cells. Substantial increase in T cell-associated Interleukin-2 (IL-2) and Granzyme B (GRB) upon exposure of splenic lymphocytes harvested from rWnt5A-treated mice to L. donovani-infected RAW 264.7 macrophages in vitro validated the occurrence of L. donovani-responsive T cell activation in vivo. In summary, this study unveils the therapeutic potential of rWnt5A in curbing L. donovani infection and the progression of experimental visceral leishmaniasis possibly through increase in cellular ROS and T cell activation. Accordingly, it opens up a new avenue of investigation into the use of rWnt5A as a therapeutic agent for restraining the progression of drug-resistant L. donovani infection.
Collapse
Affiliation(s)
- Shreyasi Maity
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Soham Sengupta
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Malini Sen
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|