1
|
Feng C, Wei Z, Li X. Identification of novel metabolism-related biomarkers of Kawasaki disease by integrating single-cell RNA sequencing analysis and machine learning algorithms. Front Immunol 2025; 16:1541939. [PMID: 40276515 PMCID: PMC12018418 DOI: 10.3389/fimmu.2025.1541939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background The bile acid metabolism (BAM) and fatty acid metabolism (FAM) have been implicated in Kawasaki disease (KD), but their precise mechanisms remain unclear. Identifying signature cells and genes related to BAM and FAM could offer a deeper understanding of their role in the pathogenesis of KD. Method We analyzed the public single-cell RNA sequencing (scRNA-seq) dataset GSE1687323 to characterize the immune cell-type landscape in KD. Gene sets related to BAM and FAM were collected from the Gene Set Enrichment Analysis (GSEA) database and previous literature. We analyzed the cellular heterogeneity of BAM and FAM at the single-cell level using R packages. Through differential expressed genes (DEG) analysis, high-dimensional Weighted Correlation Network Analysis (hdWGCNA) and machine learning algorithms, we identified signature genes associated with both BAM and FAM. The cellular expression patterns of signature genes were further validated using our own scRNA-seq dataset. Finally, quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of signature genes in KD, and Receiver Operating Characteristic (ROC) curve analysis was conducted to evaluate their diagnostic potential. Results Enhanced BAM and FAM were detected in monocytes and natural killer (NK) cells from KD in the public scRNA-seq dataset. Our scRNA-seq data confirmed the signature genes identified by machine learning algorithms: Vimentin (VIM) and chloride intracellular channel 1 (CLIC1) were upregulated in monocytes, while integrin subunit beta 2 (ITGB2) was elevated in NK cells of KD. qRT-PCR results also validated the bioinformatic analysis. Moreover, these genes demonstrated significant diagnostic potential. In the training dataset (GSE68004), the area under the curve (AUC) values and 95% CI were as follows: VIM: 0.914 (0.863-0.966), ITGB2: 0.958 (0.925-0.991), and CLIC1: 0.985 (0.969-1). The validation dataset (GSE73461) yielded similarly robust results, with AUC values and 95% CI: VIM: 0.872 (0.811-0.934), ITGB2: 0.861 (0.795-0.928), and CLIC1: 0.893 (0.837-0.948). Conclusion This study successfully identified and validated VIM and CLIC1 in monocytes, as well as ITGB2 in NK cells, as novel metabolism-related genes in KD. These findings suggest that BAM and FAM may play crucial roles in KD pathogenesis. Furthermore, these signature genes hold promising potential as diagnostic biomarkers for KD.
Collapse
Affiliation(s)
- Chenhui Feng
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Zhimiao Wei
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Xiaohui Li
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
2
|
Santos DE, Silva Lima SA, Moreira LS, Lima Costa S, de Sampaio Schitine C. New perspectives on heterogeneity in astrocyte reactivity in neuroinflammation. Brain Behav Immun Health 2025; 44:100948. [PMID: 40028234 PMCID: PMC11871470 DOI: 10.1016/j.bbih.2025.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The inflammatory response is a fundamental aspect of all insults to the central nervous system (CNS), which includes acute trauma, infections, and chronic neurodegenerative conditions. As methods for investigating astrocytes have progressed, recent findings indicate that astrocytes can react to a diverse spectrum of insults affecting the central nervous system. Astrocytes respond to external and internal stimuli from the nervous system in a process called glial reactivity. Astrocyte reactivity, previously considered uniform and functionally inactive, is currently a very diverse event in different inflammatory processes. These differences can occur due to the nature, the intensity of the stimulus, the brain region involved and can range from subtle changes in astrocytic morphology to protein expression alteration, gene transcription profile shifts, and variations in the secretory pattern of molecules. The elucidation of the diverse roles of astrocytes in both normal and pathological conditions has led to increased interest in the notion that various astrocyte subtypes may exist, each contributing with distinct functions. Our study will prioritize the characterization of astrocytic response patterns in the context of the development and progression of neurodegenerative diseases, particularly Alzheimer's and Parkinson's. In addition, we will investigate the astrocyte's response during bacterial and viral infections, given the potential to enhance specific therapeutic interventions based on the reactivity profiles of astrocytes.
Collapse
Affiliation(s)
| | | | - Leticia Santos Moreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Clarissa de Sampaio Schitine
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| |
Collapse
|
3
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
4
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
5
|
Du C, Wang C, Liu Z, Xin W, Zhang Q, Ali A, Zeng X, Li Z, Ma C. Machine learning algorithms integrate bulk and single-cell RNA data to unveil oxidative stress following intracerebral hemorrhage. Int Immunopharmacol 2024; 137:112449. [PMID: 38865753 DOI: 10.1016/j.intimp.2024.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased oxidative stress (OS) activity following intracerebral hemorrhage (ICH) had significantly impacting patient prognosis. Identifying optimal genes associated with OS could enhance the understanding of OS after ICH. METHODS We employed single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of OS across various cellular tiers following ICH, aiming to acquire biological insights into ICH. We utilized AUCell, Ucell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, to identify hub genes influencing high OS post-ICH. Furthermore, we employed four machine learning algorithms, eXtreme Gradient Boosting, Boruta, Random Forest, and Least Absolute Shrinkage and Selection Operator, to identify the optimal feature genes. To validate the accuracy of our analysis, we conducted validation in ICH animal experiments. RESULTS After analyzing the scRNA-seq dataset using various algorithms, we found that OS activity exhibited heterogeneity across different cellular layers following ICH, with particularly heightened activity observed in monocytes. Further integration of bulk data and machine learning algorithms revealed that ANXA2 and COTL1 were closely associated with high OS after ICH. Our animal experiments demonstrated an increase in OS expression post-ICH. Additionally, the protein expression of ANXA2 and COTL1 was significantly elevated and co-localized with microglia. Pearson correlation coefficient analysis revealed a significant correlation between ANXA2 and OS, indicating strong consistency (r = 0.84, p < 0.05). Similar results were observed for COTL1 and OS (r = 0.69, p < 0.05). CONCLUSIONS Following ICH, ANXA2 and COTL1 might penetrate the brain via monocytes, localize within microglia, and enhance OS activity. This might help us better understand OS after ICH.
Collapse
Affiliation(s)
- Chaonan Du
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, China
| | - Zhiwei Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxuan Xin
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qizhe Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Xinrui Zeng
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chiyuan Ma
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China; Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Huber RE, Babbitt C, Peyton SR. Heterogeneity of brain extracellular matrix and astrocyte activation. J Neurosci Res 2024; 102:e25356. [PMID: 38773875 DOI: 10.1002/jnr.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.
Collapse
Affiliation(s)
- Rebecca E Huber
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
Kwok AJ, Lu J, Huang J, Ip BY, Mok VCT, Lai HM, Ko H. High-resolution omics of vascular ageing and inflammatory pathways in neurodegeneration. Semin Cell Dev Biol 2024; 155:30-49. [PMID: 37380595 DOI: 10.1016/j.semcdb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
High-resolution omics, particularly single-cell and spatial transcriptomic profiling, are rapidly enhancing our comprehension of the normal molecular diversity of gliovascular cells, as well as their age-related changes that contribute to neurodegeneration. With more omic profiling studies being conducted, it is becoming increasingly essential to synthesise valuable information from the rapidly accumulating findings. In this review, we present an overview of the molecular features of neurovascular and glial cells that have been recently discovered through omic profiling, with a focus on those that have potentially significant functional implications and/or show cross-species differences between human and mouse, and that are linked to vascular deficits and inflammatory pathways in ageing and neurodegenerative disorders. Additionally, we highlight the translational applications of omic profiling, and discuss omic-based strategies to accelerate biomarker discovery and facilitate disease course-modifying therapeutics development for neurodegenerative conditions.
Collapse
Affiliation(s)
- Andrew J Kwok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianning Lu
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y Ip
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Shen X, Mo S, Zeng X, Wang Y, Lin L, Weng M, Sugasawa T, Wang L, Gu W, Nakajima T. Identification of antigen-presentation related B cells as a key player in Crohn's disease using single-cell dissecting, hdWGCNA, and deep learning. Clin Exp Med 2023; 23:5255-5267. [PMID: 37550553 DOI: 10.1007/s10238-023-01145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Crohn's disease (CD) arises from intricate intercellular interactions within the intestinal lamina propria. Our objective was to use single-cell RNA sequencing to investigate CD pathogenesis and explore its clinical significance. We identified a distinct subset of B cells, highly infiltrated in the CD lamina propria, that expressed genes related to antigen presentation. Using high-dimensional weighted gene co-expression network analysis and nine machine learning techniques, we demonstrated that the antigen-presenting CD-specific B cell signature effectively differentiated diseased mucosa from normal mucosa (Independent external testing AUC = 0.963). Additionally, using MCPcounter and non-negative matrix factorization, we established a relationship between the antigen-presenting CD-specific B cell signature and immune cell infiltration and patient heterogeneity. Finally, we developed a gene-immune convolutional neural network deep learning model that accurately diagnosed CD mucosa in diverse cohorts (Independent external testing AUC = 0.963). Our research has revealed a population of B cells with a potential promoting role in CD pathogenesis and represents a fundamental step in the development of future clinical diagnostic tools for the disease.
Collapse
Affiliation(s)
- Xin Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Xinlei Zeng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingxi Lin
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, 305-8577, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
10
|
Mo S, Shen X, Huang B, Wang Y, Lin L, Chen Q, Weng M, Sugasawa T, Gu W, Tsushima Y, Nakajima T. Single-cell dissection, hdWGCNA and deep learning reveal the role of oxidatively stressed plasma cells in ulcerative colitis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1730-1739. [PMID: 37814814 PMCID: PMC10686794 DOI: 10.3724/abbs.2023237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 10/11/2023] Open
Abstract
Ulcerative colitis (UC) develops as a result of complex interactions between various cell types in the mucosal microenvironment. In this study, we aim to elucidate the pathogenesis of ulcerative colitis at the single-cell level and unveil its clinical significance. Using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis, we identify a subpopulation of plasma cells (PCs) with significantly increased infiltration in UC colonic mucosa, characterized by pronounced oxidative stress. Combining 10 machine learning approaches, we find that the PC oxidative stress genes accurately distinguish diseased mucosa from normal mucosa (independent external testing AUC=0.991, sensitivity=0.986, specificity=0.909). Using MCPcounter and non-negative matrix factorization, we identify the association between PC oxidative stress genes and immune cell infiltration as well as patient heterogeneity. Spatial transcriptome data is used to verify the infiltration of oxidatively stressed PCs in colitis. Finally, we develop a gene-immune convolutional neural network deep learning model to diagnose UC mucosa in different cohorts (independent external testing AUC=0.984, sensitivity=95.9%, specificity=100%). Our work sheds light on the key pathogenic cell subpopulations in UC and is essential for the development of future clinical disease diagnostic tools.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | - Xin Shen
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | | | - Yulin Wang
- Department of NephrologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Lingxi Lin
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | - Qiuming Chen
- Department of Thoracic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Meilin Weng
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports MedicineDepartment of Clinical MedicineFaculty of MedicineUniversity of TsukubaIbaraki305-8577Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional RadiologyUniversity of TsukubaIbaraki305-8577Japan
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashi371-8511Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashi371-8511Japan
| | - Takahito Nakajima
- Department of Diagnostic and Interventional RadiologyUniversity of TsukubaIbaraki305-8577Japan
| |
Collapse
|
11
|
Basak I, Harfoot R, Palmer JE, Kumar A, Quiñones-Mateu ME, Schweitzer L, Hughes SM. Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways. Biomolecules 2023; 13:1597. [PMID: 38002279 PMCID: PMC10669333 DOI: 10.3390/biom13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain.
Collapse
Affiliation(s)
- Indranil Basak
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Jennifer E. Palmer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin 9016, New Zealand
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Lucia Schweitzer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M. Hughes
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
12
|
Fehsel K. Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented? Biomedicines 2023; 11:2421. [PMID: 37760862 PMCID: PMC10526115 DOI: 10.3390/biomedicines11092421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Impaired iron metabolism has been increasingly observed in many diseases, but a deeper, mechanistic understanding of the cellular impact of altered iron metabolism is still lacking. In addition, deficits in neuronal energy metabolism due to reduced glucose import were described for Alzheimer's disease (AD) and its comorbidities like obesity, depression, cardiovascular disease, and type 2 diabetes mellitus. The aim of this review is to present the molecular link between both observations. Insufficient cellular glucose uptake triggers increased ferritin expression, leading to depletion of the cellular free iron pool and stabilization of the hypoxia-induced factor (HIF) 1α. This transcription factor induces the expression of the glucose transporters (Glut) 1 and 3 and shifts the cellular metabolism towards glycolysis. If this first line of defense is not adequate for sufficient glucose supply, further reduction of the intracellular iron pool affects the enzymes of the mitochondrial electron transport chain and activates the AMP-activated kinase (AMPK). This enzyme triggers the translocation of Glut4 to the plasma membrane as well as the autophagic recycling of cell components in order to mobilize energy resources. Moreover, AMPK activates the autophagic process of ferritinophagy, which provides free iron urgently needed as a cofactor for the synthesis of heme- and iron-sulfur proteins. Excessive activation of this pathway ends in ferroptosis, a special iron-dependent form of cell death, while hampered AMPK activation steadily reduces the iron pools, leading to hypoferremia with iron sequestration in the spleen and liver. Long-lasting iron depletion affects erythropoiesis and results in anemia of chronic disease, a common condition in patients with AD and its comorbidities. Instead of iron supplementation, drugs, diet, or phytochemicals that improve energy supply and cellular glucose uptake should be administered to counteract hypoferremia and anemia of chronic disease.
Collapse
Affiliation(s)
- Karin Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich-Heine-University, 240629 Düsseldorf, Germany
| |
Collapse
|
13
|
Damiano RF, Rocca CCDA, Serafim ADP, Loftis JM, Talib LL, Pan PM, Cunha-Neto E, Kalil J, de Castro GS, Seelaender M, Guedes BF, Nagahashi Marie SK, de Souza HP, Nitrini R, Miguel EC, Busatto G, Forlenza OV. Cognitive impairment in long-COVID and its association with persistent dysregulation in inflammatory markers. Front Immunol 2023; 14:1174020. [PMID: 37287969 PMCID: PMC10242059 DOI: 10.3389/fimmu.2023.1174020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Objective To analyze the potential impact of sociodemographic, clinical and biological factors on the long-term cognitive outcome of patients who survived moderate and severe forms of COVID-19. Methods We assessed 710 adult participants (Mean age = 55 ± 14; 48.3% were female) 6 to 11 months after hospital discharge with a complete cognitive battery, as well as a psychiatric, clinical and laboratory evaluation. A large set of inferential statistical methods was used to predict potential variables associated with any long-term cognitive impairment, with a focus on a panel of 28 cytokines and other blood inflammatory and disease severity markers. Results Concerning the subjective assessment of cognitive performance, 36.1% reported a slightly poorer overall cognitive performance, and 14.6% reported being severely impacted, compared to their pre-COVID-19 status. Multivariate analysis found sex, age, ethnicity, education, comorbidity, frailty and physical activity associated with general cognition. A bivariate analysis found that G-CSF, IFN-alfa2, IL13, IL15, IL1.RA, EL1.alfa, IL45, IL5, IL6, IL7, TNF-Beta, VEGF, Follow-up C-Reactive Protein, and Follow-up D-Dimer were significantly (p<.05) associated with general cognition. However, a LASSO regression that included all follow-up variables, inflammatory markers and cytokines did not support these findings. Conclusion Though we identified several sociodemographic characteristics that might protect against cognitive impairment following SARS-CoV-2 infection, our data do not support a prominent role for clinical status (both during acute and long-stage of COVID-19) or inflammatory background (also during acute and long-stage of COVID-19) to explain the cognitive deficits that can follow COVID-19 infection.
Collapse
Affiliation(s)
- Rodolfo Furlan Damiano
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Cristiana Castanho de Almeida Rocca
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | | - Jennifer M. Loftis
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Leda Leme Talib
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Pedro Mário Pan
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Edecio Cunha-Neto
- Departamento de Cínica Médica, Universidade de São Paulo FMUSP, São Paulo, SP, Brazil
- Institute for Investigation in Immunology/National Institutes for Science and Technology (iii/INCT), São Paulo, Brazil
| | - Jorge Kalil
- Departamento de Cínica Médica, Universidade de São Paulo FMUSP, São Paulo, SP, Brazil
- Institute for Investigation in Immunology/National Institutes for Science and Technology (iii/INCT), São Paulo, Brazil
| | - Gabriela Salim de Castro
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno F. Guedes
- Departamento de Neurologia, Universidade de São Paulo FMUSP, São Paulo, Brazil
| | | | | | - Ricardo Nitrini
- Departamento de Neurologia, Universidade de São Paulo FMUSP, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Geraldo Busatto
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
14
|
Mo S, Shen X, Wang Y, Liu Y, Sugasawa T, Yang Z, Gu W, Nakajima T. Systematic single-cell dissecting reveals heterogeneous oncofetal reprogramming in the tumor microenvironment of gastric cancer. Hum Cell 2023; 36:689-701. [PMID: 36662371 DOI: 10.1007/s13577-023-00856-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Oncofetal reprogramming of the tumor microenvironment is clinically relevant. This study used the non-negative matrix factorial (NMF) algorithm for single-cell RNA sequencing data of gastric cancer (GC) based on embryonic stem genes. Pseudotime analysis, cell-cell interaction analysis, and SCENIC analysis revealed that cancer-associated fibroblasts (CAFs), tumor-associated endothelial cells (TECs), and tumor-associated macrophages (TAMs) have different oncofetal reprogramming that affects cell function, enhances intercellular communication, and activates multiple transcription factors in these cells. Furthermore, based on the signatures of the newly defined oncofetal cell subtypes and expression profiles of large cohorts in GC patients, we determined that GJA1 + TEC-C2, IFITM1 + CAF-C3, PODXL + TEC-C1, SFRP2 + CAF-C2, and SRSF7 + CAF-C1 are crucial prognostic factors for GC patients and predictors of immune checkpoint blockade in GC. Cell subtypes were validated by immunohistochemical methods. Our novel, profound, and systematic analysis of the oncofetal reprogramming of GC may facilitate the development of improved drugs for treating GC.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Xin Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - YunPeng Liu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - ZongCheng Yang
- Department of Stomatology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, 305-8577, Japan. .,Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
15
|
Korchut A, Rejdak K. Late neurological consequences of SARS-CoV-2 infection: New challenges for the neurologist. Front Neurosci 2023; 17:1004957. [PMID: 36845421 PMCID: PMC9947479 DOI: 10.3389/fnins.2023.1004957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Objective In this study, a systematic review of the literature was performed to study the frequency of neurological symptoms and diseases in adult patients with COVID-19 that may be late consequences of SARS-CoV-2 infection. Methods Relevant studies were identified through electronic explorations of Scopus, PubMed, and Google Scholar. We followed PRISMA guidelines. Data were collected from studies where the diagnosis of COVID-19 was confirmed and its late neurological consequences occurred at least 4 weeks after initial SARS-CoV-2 infection. Review articles were excluded from the study. Neurological manifestations were stratified based on frequency (above 5, 10, and 20%), where the number of studies and sample size were significant. Results A total of 497 articles were identified for eligible content. This article provides relevant information from 45 studies involving 9,746 patients. Fatigue, cognitive problems, and smell and taste dysfunctions were the most frequently reported long-term neurological symptoms in patients with COVID-19. Other common neurological issues were paresthesia, headache, and dizziness. Conclusion On a global scale of patients affected with COVID-19, prolonged neurological problems have become increasingly recognized and concerning. Our review might be an additional source of knowledge about potential long-term neurological impacts.
Collapse
Affiliation(s)
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|