1
|
Jerome JR, Wilson KL, Fialho J, Goodchild G, Prakash MD, McLeod C, Richmond PC, Apostolopoulos V, Flanagan KL, Plebanski M. Optimisation of the cultured ELISpot/Fluorospot technique for the selective investigation of SARS-CoV-2 reactive central memory T cells. Front Immunol 2025; 16:1547220. [PMID: 40303392 PMCID: PMC12037488 DOI: 10.3389/fimmu.2025.1547220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction This study presents an optimised cultured ELISpot protocol for detecting central memory T-cell interferon gamma (IFNγ) responses against SARS-CoV-2 peptides following an initial priming with either peptides, or whole spike protein. Methods Key variations optimised include the culture length, timing of exogenous survival signals (IL-2), and endpoint analysis modality and cell density to enhance assay sensitivity without compromising specificity for central memory T-cell IFNγ recall responses to cognate antigen. Results We noted a culture duration of 10 days, combined with a delayed IL-2 administration on day 5 to enhance assay sensitivity while maintaining response specificity towards cognate antigen when compared with shorter culture periods or earlier exogenous survival signal provision. With regards to lower-frequency T-cell interactions, as we observed with our donor SARS-CoV-2 epitope responses, our findings suggest Fluorospot to be preferable to the chromogenic ELISpot modality, and an immediate cell washing after culture collection to better facilitate cognate antigen responses. Fluorospot enabled a higher cell density while minimising the generation of visual artefacts, meanwhile immediate cell washing was critical for improving endpoint assay sensitivity. CCR7+ cell depletion was used to demonstrate our optimised protocol to selectively demonstrate central memory T-cell responses. Lastly, we provide evidence for the capacity of our assay to delineate individual responding peptides following peptide pool priming, and to explore cross-reactivity between viral variant peptides. Conclusion This work advances the methodology for investigating T-cell immunity, particularly in the context of SARS-CoV-2, and emphasises the balance between enhancing specific cognate central memory responses while limiting non-specific activation.
Collapse
Affiliation(s)
- Jack R. Jerome
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Kirsty L. Wilson
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Joshuah Fialho
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Georgia Goodchild
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Monica D. Prakash
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Charlie McLeod
- Wesfarmers Centre of Vaccines and Infectious Diseases, Kids Research Institute of Australia, Perth, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Infectious Diseases Department, Perth Children’s Hospital, Perth, WA, Australia
| | - Peter C. Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Kids Research Institute of Australia, Perth, WA, Australia
- Infectious Diseases Department, Perth Children’s Hospital, Perth, WA, Australia
- Division of Paediatrics, University of Western Australia School of Medicine, Perth, WA, Australia
- Department of Immunology, Perth Children’s Hospital, Perth, WA, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Katie L. Flanagan
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
- Accelerator for Translational Research in Clinical Trials (ATRACT) Centre, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
He L, Wang Y, Yuan F, Morrissey S, Geller AE, Hu X, Xu R, Ma X, Zhang HG, McLeish K, Huang J, Zhang X, Yan J. Metabolomics Profiling Reveals Critical Roles of Indoxyl Sulfate in the Regulation of Innate Monocytes in COVID-19. Cells 2025; 14:256. [PMID: 39996729 PMCID: PMC11853107 DOI: 10.3390/cells14040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is intricately related to the reprogramming of host metabolism. However, existing studies have mainly focused on peripheral blood samples and barely identified specific metabolites that are critically involved in the pathology of coronavirus disease 2019 (COVID-19). In the current small-scale study, we performed metabolic profiling in plasma (n = 61) and paired bronchoalveolar lavage fluid (BALF) samples (n = 20) using parallel two-dimensional liquid chromatography-mass spectrometry (2DLC-MS). In addition, we studied how an identified metabolite regulates the immunopathogenesis of COVID-19. The results unveiled distinct metabolome changes between healthy donors, and moderate and severe patients in both plasma and BALF, indicating that locations and disease severity play critical roles in COVID-19 metabolic alteration. Notably, a vital metabolite, indoxyl sulfate, was found to be elevated in both the plasma and BALF of severe COVID-19 patients. Indoxyl sulfate selectively induced TNF-α production, reduced co-stimulatory signals, and enhanced apoptosis in human monocytes. Moreover, its levels negatively correlated with the strength of co-stimulatory signals and antigen presentation capability in monocytes of COVID-19 patients. Collectively, our findings suggest that the levels of indoxyl sulfate could potentially serve as a functional biomarker to monitor COVID-19 disease progression and guide more individualized treatment for COVID-19 patients.
Collapse
Affiliation(s)
- Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Yunke Wang
- Immuno-Oncology Program, Brown Cancer Center, Division of Immunotherapy, MD Department of Surgery, University of Louisville, Louisville, KY 40292, USA (X.H.)
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Samantha Morrissey
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - Anne E. Geller
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - Xiaoling Hu
- Immuno-Oncology Program, Brown Cancer Center, Division of Immunotherapy, MD Department of Surgery, University of Louisville, Louisville, KY 40292, USA (X.H.)
| | - Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Huang-ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| | - Kenneth McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, KY 40292, USA;
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville Hospital, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; (L.H.); (R.X.); (X.M.); (X.Z.)
| | - Jun Yan
- Immuno-Oncology Program, Brown Cancer Center, Division of Immunotherapy, MD Department of Surgery, University of Louisville, Louisville, KY 40292, USA (X.H.)
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Pinto PBA, Timis J, Chuensirikulchai K, Li QH, Lu HH, Maule E, Nguyen M, Alves RPDS, Verma SK, Ana-Sosa-Batiz F, Valentine K, Landeras-Bueno S, Kim K, Hastie K, Saphire EO, Alves A, Elong Ngono A, Shresta S. Co-immunization with spike and nucleocapsid based DNA vaccines for long-term protective immunity against SARS-CoV-2 Omicron. NPJ Vaccines 2024; 9:252. [PMID: 39702529 PMCID: PMC11659323 DOI: 10.1038/s41541-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
The continuing evolution of SARS-CoV-2 variants challenges the durability of existing spike (S)-based COVID-19 vaccines. We hypothesized that vaccines composed of both S and nucleocapsid (N) antigens would increase the durability of protection by strengthening and broadening cellular immunity compared with S-based vaccines. To test this, we examined the immunogenicity and efficacy of wild-type SARS-CoV-2 S- and N-based DNA vaccines administered individually or together to K18-hACE2 mice. S, N, and S + N vaccines all elicited polyfunctional CD4+ and CD8+ T cell responses and provided short-term cross-protection against Beta and Omicron BA.2 variants, but only co-immunization with S + N vaccines provided long-term protection against Omicron BA.2. Depletion of CD4+ and CD8+ T cells reduced the long-term efficacy, demonstrating a crucial role for T cells in the durability of protection. These findings underscore the potential to enhance long-lived protection against SARS-CoV-2 variants by combining S and N antigens in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Paolla Beatriz Almeida Pinto
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kantinan Chuensirikulchai
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Hsueh Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Michael Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | | | | | | | - Kristen Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- University Cardenal Herrera-CEU, CEU Universities, Valencia, 46113, Spain
| | - Kenneth Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, 92093, USA
| | - Ada Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, 92093, USA.
| |
Collapse
|
4
|
Zou Y, Luo J, Chen L, Wang X, Liu W, Wang RH, Li SC. Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. Mol Syst Biol 2024; 20:1329-1345. [PMID: 39496799 PMCID: PMC11612385 DOI: 10.1038/s44320-024-00070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
T cell receptors (TCR) and gene expression provide two complementary and essential aspects in T cell understanding, yet their diversity presents challenges in integrative analysis. We introduce TCRclub, a novel method integrating single-cell RNA sequencing data and single-cell TCR sequencing data using local harmony to identify functionally similar T cell groups, termed 'clubs'. We applied TCRclub to 298,106 T cells across seven datasets encompassing various diseases. First, TCRclub outperforms the state-of-the-art methods in clustering T cells on a dataset with over 400 verified peptide-major histocompatibility complex categories. Second, TCRclub reveals a transition from activated to exhausted T cells in cholangiocarcinoma patients. Third, TCRclub discovered the pathways that could intervene in response to anti-PD-1 therapy for patients with basal cell carcinoma by analyzing the pre-treatment and post-treatment samples. Furthermore, TCRclub unveiled different T-cell responses and gene patterns at different severity levels in patients with COVID-19. Hence, TCRclub aids in developing more effective immunotherapeutic strategies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Yiping Zou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong (Dongguan), Dongguan, China
| | - Wei Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ruo Han Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Laubenbacher R, Adler F, An G, Castiglione F, Eubank S, Fonseca LL, Glazier J, Helikar T, Jett-Tilton M, Kirschner D, Macklin P, Mehrad B, Moore B, Pasour V, Shmulevich I, Smith A, Voigt I, Yankeelov TE, Ziemssen T. Forum on immune digital twins: a meeting report. NPJ Syst Biol Appl 2024; 10:19. [PMID: 38365857 PMCID: PMC10873299 DOI: 10.1038/s41540-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.
Collapse
Affiliation(s)
| | - Fred Adler
- Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gary An
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Filippo Castiglione
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE
| | - Stephen Eubank
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Luis L Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - James Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | | | - Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Borna Mehrad
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Beth Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Virginia Pasour
- U.S. Army Research Office, Research Triangle Park, Raleigh, NC, USA
| | | | - Amber Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabel Voigt
- Center of Clinical Neuroscience, Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, Oden Institute for Computational Engineering and Sciences, Departments of Biomedical Engineering, Diagnostic Medicine, Oncology, The University of Texas, Austin, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
6
|
Smit WL, van Tol S, Haas LEM, Limonard GJM, Bossink A, Reusken C, Heron M, Thijsen SFT. Differential abundance of IgG antibodies against the spike protein of SARS-CoV-2 and seasonal coronaviruses in patients with fatal COVID-19. Virol J 2023; 20:85. [PMID: 37138352 PMCID: PMC10156070 DOI: 10.1186/s12985-023-02050-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Infection with the novel pandemic SARS-CoV-2 virus has been shown to elicit a cross-reactive immune response that could lead to a back-boost of memory recall to previously encountered seasonal (endemic) coronaviruses (eCoVs). Whether this response is associated with a fatal clinical outcome in patients with severe COVID-19 remains unclear. In a cohort of hospitalized patients, we have previously shown that heterologous immune responses to eCoVs can be detected in severe COVID-19. Here, we report that COVID-19 patients with fatal disease have decreased SARS-CoV-2 neutralizing antibody titers at hospital admission, which correlated with lower SARS-CoV-2 spike-specific IgG and was paralleled by a relative abundance of IgG against spike protein of eCoVs of the genus Betacoronavirus. Additional research is needed to assess if eCoV-specific back-boosted IgG is a bystander phenomenon in severe COVID-19, or a factor that influences the development of an efficient anti-viral immune response.
Collapse
Affiliation(s)
- Wouter L Smit
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Sophie van Tol
- Centre for Infectious Disease Control, WHO Reference Laboratory for COVID-19, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lenneke E M Haas
- Department of Intensive Care, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Gijs J M Limonard
- Department of Pulmonary Diseases, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Ailko Bossink
- Department of Pulmonary Diseases, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, WHO Reference Laboratory for COVID-19, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Michiel Heron
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - Steven F T Thijsen
- Department of Medical Microbiology and Immunology, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| |
Collapse
|