1
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 PMCID: PMC11659936 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Wenbo He
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Yurong Wen
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
2
|
Wu X, Yang C, Sun F, Zhang Y, Wang Y, Li X, Zheng F. Enterotoxigenic Bacteroides fragilis (ETBF) Enhances Colorectal Cancer Cell Proliferation and Metastasis Through HDAC3/miR-139-3p Pathway. Biochem Genet 2024; 62:3904-3919. [PMID: 38244157 DOI: 10.1007/s10528-023-10621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is believed to promote the malignant process of colorectal cancer (CRC), but the underlying molecular mechanism still needs to be revealed. CRC cells (SW480 and HCT-116) were treated with ETBF strain. Cell proliferation, invasion and, migration were evaluated by cell counting kit 8 assay, EdU assay, colony formation assay, transwell assay, and wound healing assay. Protein expression was analyzed by western blot. MicroRNA (miR)-139-3p and histone deacetylase 3 (HDAC3) expression levels in tissues and cells were determined by qRT-PCR. Xenograft tumor model was conducted to evaluate the effect of miR-139-3p on CRC tumor growth. ETBF treatment could promote CRC cell proliferation, invasion and migration. MiR-139-3p expression was decreased by ETBF, and its overexpression reversed the effect of ETBF on CRC cell progression. HDAC3 negatively regulated miR-139-3p expression, and its overexpression facilitated CRC cell behaviors via reducing miR-139-3p expression. Moreover, HDAC3 expression was increased by ETBF, and its knockdown also abolished ETBF-mediated CRC cell progression. Additionally, miR-139-3p overexpression could reduce CRC tumor growth in vivo. ETBF aggravated CRC proliferation and metastasis via the regulation of HDAC3/miR-139-3p axis. The discovery of ETBF/HDAC3/miR-139-3p axis may provide a new direction for CRC treatment.
Collapse
Affiliation(s)
- Xiaoyong Wu
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Chengrui Yang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Fangyuan Sun
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Yanzhong Zhang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Yanliang Wang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Xuzhao Li
- Department of Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750011, Ningxia, China
| | - Fengxian Zheng
- Department of Critical Care Medicine, Affiliated Danzhou People's Hospital of Hainan Medical University, No. 21-1, Datong Road, Nada Town, Danzhou City, 571747, Hainan, China.
| |
Collapse
|
3
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
4
|
Tong J, Wu L, Li B, Jiang N, Huang J, Wu D, Zhou L, Yang Q, Jiao Y, Chen J, Zhao K, Pei X. Image-based vegetation analysis of desertified area by using a combination of ImageJ and Photoshop software. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:306. [PMID: 38407649 DOI: 10.1007/s10661-024-12479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Fractional vegetation cover (FVC) is a crucial indicator to estimate degradation and desertification for grasslands. However, traditional small-scale FVC analysis methods, such as visual estimation and point-sampling, are cumbersome and imprecise. Innovative methods like image-based FVC analysis methods, while accurate, face challenges such as complex analytical procedures and the necessary training for operations. Therefore, in this study, a combined application of ImageJ and Photoshop was employed to achieve a more effective analysis of FVC values in desertification areas. Our results showed that the FVC results obtained by combination of Photoshop and ImageJ were dependable and precise (R2 > 0.98), demonstrating equivalency to results obtained through either visual estimation or Photoshop-based methods. Furthermore, even in the face of background interference and varied shooting angles, the combination of ImageJ and Photoshop software was still able to maintain a low error rate when analyzing FVC values (average error rate = - 2.6%). In conclusion, the imaged-based combined FVC analysis method employed in our research was an effective, precise, and efficient technique for analyzing small-scale FVC, promising substantial improvement over conventional methods.
Collapse
Affiliation(s)
- Jin Tong
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Bin Li
- Chengdu Jinkai Bioengineering Co., Ltd., Chengdu, 611130, Sichuan, China
| | - Nan Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Di Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Lihong Zhou
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Qingwen Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
5
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
6
|
Fernandez-Julia P, Black GW, Cheung W, Van Sinderen D, Munoz-Munoz J. Fungal β-glucan-facilitated cross-feeding activities between Bacteroides and Bifidobacterium species. Commun Biol 2023; 6:576. [PMID: 37253778 DOI: 10.1038/s42003-023-04970-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
The human gut microbiota (HGM) is comprised of a very complex network of microorganisms, which interact with the host thereby impacting on host health and well-being. β-glucan has been established as a dietary polysaccharide supporting growth of particular gut-associated bacteria, including members of the genera Bacteroides and Bifidobacterium, the latter considered to represent beneficial or probiotic bacteria. However, the exact mechanism underpinning β-glucan metabolism by gut commensals is not fully understood. We show that mycoprotein represents an excellent source for β-glucan, which is consumed by certain Bacteroides species as primary degraders, such as Bacteroides cellulosilyticus WH2. The latter bacterium employs two extracellular, endo-acting enzymes, belonging to glycoside hydrolase families 30 and 157, to degrade mycoprotein-derived β-glucan, thereby releasing oligosaccharides into the growth medium. These released oligosaccharides can in turn be utilized by other gut microbes, such as Bifidobacterium and Lactiplantibacillus, which thus act as secondary degraders. We used a cross-feeding approach to track how both species are able to grow in co-culture.
Collapse
Affiliation(s)
- Pedro Fernandez-Julia
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Gary W Black
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - William Cheung
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK.
| |
Collapse
|