1
|
Rodrigues CR, Aulakh GK, Kroeker A, Kulkarni SS, Lew J, Falzarano D, Singh B. Recruitment of pulmonary intravascular macrophages in SARS-CoV-2 infected hamsters. Cell Tissue Res 2025; 400:1-15. [PMID: 40014090 DOI: 10.1007/s00441-025-03958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe lung inflammation and mortality remain unclear. While the role of alveolar macrophages in COVID-19 is known, data on pulmonary intravascular macrophages (PIMs) is lacking. PIMs are key inflammatory cells present in species like cattle and pigs. Though constitutively absent in humans and rodents, their recruitment in rodents triggers exaggerated inflammation. We investigated the recruitment of PIMs and other immune cells, using immunofluorescence, hematoxylin and eosin (H&E) staining, and immunogold labeling in a hamster model of SARS-CoV-2 infection. Syrian golden hamsters were divided into 6 groups: uninfected control, unvaccinated-infected at 2-, 5-, and 14-days post infection (dpi) and vaccinated-infected at 5- and 14-dpi. Lung tissues were analyzed for neutrophils (myeloperoxidase), monocytes/macrophages (CCR2, CX3CR1), macrophages (IBA-1), and T cells (CD3). Septal macrophages increased at 2-, 5-, and 14-dpi in infected animals vs. control. CX3CR1 + cells decreased at 14-dpi in unvaccinated animals, but CX3CR1/CCR2 double positive cells were higher at 5-dpi, indicating a pro-inflammatory macrophage phenotype. PIMs were confirmed by transmission electron microscopy. These are the first data showing recruitment of pro-inflammatory PIMs in SARS-CoV-2 infected lungs.
Collapse
Affiliation(s)
| | | | - Andrea Kroeker
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Swarali S Kulkarni
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Baljit Singh
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
2
|
Qu Z, Chu J, Jin S, Yang C, Zang J, Zhang J, Xu D, Cheng M. Tissue-resident macrophages and renal diseases: landscapes and treatment directions. Front Immunol 2025; 16:1548053. [PMID: 40230850 PMCID: PMC11994677 DOI: 10.3389/fimmu.2025.1548053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Tissue-resident macrophage (TRM) is a specialized subset of macrophage that resides within specific tissues and organs. TRMs play crucial roles in resisting pathogen invasion, maintaining the homeostasis of the immune microenvironment, and promoting tissue repair and regeneration. The development and function of TRMs exhibit significant heterogeneity across different tissues. Kidney TRMs (KTRMs) originate from both embryonic yolk sac erythro-myeloid progenitors and the fetal liver, demonstrating the capacity for self-renewal independent of bone marrow hematopoiesis. KTRMs are not only essential for the maintenance of renal homeostasis and the monitoring of microvascular environment, but contribute to renal injury due to inflammation, fibrosis and immune dysfunction in kidneys. In this review, we summarize currently available studies on the regulatory role of KTRMs in processes of renal injury and repair. The altering effects and underlying mechanisms of KTRMs in regulating local tissue cells and immune cells in different renal diseases are reviewed, primarily including lupus nephritis, diabetic nephropathy, renal fibrosis, and renal carcinoma. Understanding the plasticity and immune regulatory functions of KTRMs may offer new insights into the pathogenesis and the exploration of therapeutic strategies of kidney diseases.
Collapse
Affiliation(s)
- Zhuojian Qu
- School of Basic Medicine, Shandong Second Medical University, Weifang, China
| | - Jinjin Chu
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Shuyu Jin
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Jie Zang
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
- Department of Rheumatology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- School of Basic Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Gu R, Zhi Y, Wang A, Ying D, Zeng H, Shi P, Cao L, Zhang J, Wang Q. The association between fractalkine/CX3CR1 axis with IgA vasculitis and nephritis. Pediatr Res 2025:10.1038/s41390-025-03957-7. [PMID: 40033077 DOI: 10.1038/s41390-025-03957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The study investigated whether the fractalkine/CX3CR1 axis is associated with the presence and severity of IgA vasculitis (IgAV) and IgA vasculitis nephritis (IgAVN) in children. METHODS We included 59 children with IgAV, 42 children with IgAVN (including 18 children with kidney biopsy), 26 plasma controls and 8 kidney controls. Clinical pathological data were collected, and the fractalkine/CX3CR1 axis and macrophage expression in the circulation and kidneys were detected. RESULTS Circulating fractalkine/CX3CR1 axis expression was significantly upregulated in children with IgAV and IgAVN compared to healthy controls. Plasma fractalkine levels and the proportion of CX3CR1+ monocytes were significantly higher in children with IgAVN than in those with IgAV, and the kidney expression of fractalkine/CX3CR1 axis and CD68 were significantly increased in the IgAVN group relative to normal controls, especially in children with IgAVN with more severe ISKDC pathological grading. Additionally, kidney levels of fractalkine, CX3CR1, and CD68 exhibited significant positive correlations with tubulointerstitial grading and serum creatinine levels. CONCLUSION The expression of fractalkine/CX3CR1 axis is associated with the presence and severity of IgAV and IgAVN. Our findings support further investigation of fractalkine/CX3CR1 as a target for future therapies in IgAV and IgAN. IMPACT The expression of plasma fractalkine/CX3CR1 axis is associated with the presence and severity of IgAV and IgAVN. The expression of kidney fractalkine/CX3CR1 axis and macrophage are upregulated in IgAVN, which is closely associated with poorer kidney function and more severe kidney pathology. Our findings support further investigation of fractalkine/CX3CR1 as a target for future therapies in IgAV and IgAVN.
Collapse
Affiliation(s)
- Rui Gu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China
| | - Yuanzhao Zhi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China
| | - Aoyu Wang
- Department of Medical Record Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daojing Ying
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China
| | - Huiqin Zeng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China
| | - Peipei Shi
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China
| | - Lu Cao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China
| | - Jianjiang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China.
| | - Qin Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Clinical Center of Pediatric Nephrology of Henan Province, Zhengzhou, China.
| |
Collapse
|
4
|
Gómez-Oro C, Latorre MC, Arribas-Poza P, Ibáñez-Escribano A, Baca-Cornejo KR, Gallego-Valle J, López-Escobar N, Mondéjar-Palencia M, Pion M, López-Fernández LA, Mercader E, Pérez-Milán F, Relloso M. Progesterone promotes CXCl2-dependent vaginal neutrophil killing by activating cervical resident macrophage-neutrophil crosstalk. JCI Insight 2024; 9:e177899. [PMID: 39298265 PMCID: PMC11529979 DOI: 10.1172/jci.insight.177899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Vaginal infections in women of reproductive age represent a clinical dilemma with significant socioeconomic implications. The current understanding of mucosal immunity failure during early pathogenic invasions that allows the pathogen to grow and thrive is far from complete. Neutrophils infiltrate most tissues following circadian patterns as part of normal repair, regulation of microbiota, or immune surveillance and become more numerous after infection. Neutrophils are responsible for maintaining vaginal immunity. Specific to the vagina, neutrophils continuously infiltrate at high levels, although during ovulation, they retreat to avoid sperm damage and permit reproduction. Here we show that, after ovulation, progesterone promotes resident vaginal macrophage-neutrophil crosstalk by upregulating Yolk sac early fetal organs (FOLR2+) macrophage CXCl2 expression, in a TNFA-patrolling monocyte-derived macrophage-mediated (CX3CR1hiMHCIIhi-mediated) manner, to activate the neutrophils' capacity to eliminate sex-transmitted and opportunistic microorganisms. Indeed, progesterone plays an essential role in conciliating the balance between the commensal microbiota, sperm, and the threat of pathogens because progesterone not only promotes a flurry of neutrophils but also increases neutrophilic fury to restore immunity after ovulation to thwart pathogenic invasion after intercourse. Therefore, modest progesterone dysregulations could lead to a suboptimal neutrophilic response, resulting in insufficient mucosal defense and recurrent unresolved infections.
Collapse
Affiliation(s)
- Carla Gómez-Oro
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Maria C. Latorre
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Patricia Arribas-Poza
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Katia R. Baca-Cornejo
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Natalia López-Escobar
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mabel Mondéjar-Palencia
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratorio de InmunoRegulación, IiSGM, Madrid, Spain
| | - Luis A. López-Fernández
- Laboratorio de Farmacogenética, Grupo de Farmacia Hospitalaria y Farmacogenómica, IiSGM, Madrid, Spain
| | - Enrique Mercader
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Unidad Cirugía Endocrino-metabólica, Servicio de Cirugía General y Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Federico Pérez-Milán
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Unidad de Reproducción Asistida, Servicio de Obstetricia y Ginecología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel Relloso
- Laboratorio de InmunoReproducción, Grupo Fisiopatología de la mujer, del embarazo, parto y puerperio, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
5
|
Chew C, Brand OJ, Yamamura T, Lawless C, Morais MRPT, Zeef L, Lin IH, Howell G, Lui S, Lausecker F, Jagger C, Shaw TN, Krishnan S, McClure FA, Bridgeman H, Wemyss K, Konkel JE, Hussell T, Lennon R. Kidney resident macrophages have distinct subsets and multifunctional roles. Matrix Biol 2024; 127:23-37. [PMID: 38331051 DOI: 10.1016/j.matbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.
Collapse
Affiliation(s)
- Christine Chew
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Oliver J Brand
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tomohiko Yamamura
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Mychel Raony Paiva Teixeira Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gareth Howell
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sylvia Lui
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Christopher Jagger
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, United Kingdom
| | - Siddharth Krishnan
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Flora A McClure
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hayley Bridgeman
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joanne E Konkel
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom.
| |
Collapse
|
6
|
He J, Cao Y, Zhu Q, Wang X, Cheng G, Wang Q, He R, Lu H, Weng Y, Mao G, Bao Y, Wang J, Liu X, Han F, Shi P, Shen XZ. Renal macrophages monitor and remove particles from urine to prevent tubule obstruction. Immunity 2024; 57:106-123.e7. [PMID: 38159573 DOI: 10.1016/j.immuni.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin β1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.
Collapse
Affiliation(s)
- Jian He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinge Wang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo Cheng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rukun He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoran Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
| | - Yuancheng Weng
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Sung CYW, Hayase N, Yuen PS, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage Depletion Protects Against Cisplatin-Induced Ototoxicity and Nephrotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567274. [PMID: 38014097 PMCID: PMC10680818 DOI: 10.1101/2023.11.16.567274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Mark E. Warchol
- Washington University, Department of Otolaryngology, School of Medicine, Saint Louis, MO
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|