1
|
Jiang M, Liu J, Hu S, Yan X, Cao Y, Wu Z. Exosomal miR-125b-5p derived from mesenchymal stromal/stem cell enhances anti-PD-1 therapy in mouse colon cancer model. Stem Cell Res Ther 2025; 16:112. [PMID: 40038776 DOI: 10.1186/s13287-025-04227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND There is compelling evidence that FoxP3+ regulatory T cells (Tregs) play a critical role in promoting tumor immune evasion. Our prior research demonstrated that the expression of miR-125b-5p directly inhibits Tregs by targeting TNFR2 and FoxP3. Given the significant therapeutic potential of mesenchymal stromal/stem cell (MSC)-derived exosomes (MSC-EXO) in cancer treatment, the potential role of MSC-EXO in augmenting anti-tumor immunotherapy through the delivery of miR-125b-5p remains unexplored. METHODS Nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were employed to characterize exosomes derived from MSCs. Flow cytometry analysis was conducted to investigate the function of exosomal miR-125b-5p both in vitro and in vivo. Mouse MC38 tumor models were administrated MSC-derived exosomes containing miR-125b-5p via tail vein injection, with or without the concurrent injection (intraperitoneally, i.p.) of anti-PD-1 antibodies. RESULTS Our results indicated that exosomal miR-125b-5p derived from MSC significantly inhibited the expansion, proliferation and suppressive function of Tregs in vitro. Moreover, we observed a marked reduction in tumor growth in mice treated with exosomal miR-125b-5p. Notably, while anti-PD-1 therapy alone achieved a cure rate of approximately 30% in a mouse model of colon cancer, the combined administration of exosomal miR-125b-5p significantly enhanced the therapeutic efficacy, resulting in a more than two- to three-fold increase in tumor regression in approximately 80% of the treated mice. The underlying cellular mechanism was closely associated with the reduction of tumor-infiltrating Tregs. and the increase of CD8+ cytotoxic T lymphocytes (CTLs). CONCLUSIONS In summary, our findings suggest that exosomal miR-125b-5p derived from MSC exerts prominent potential in advancing anti-PD-1 therapy by modulating tumor immune environment. This property of miR-125b-5p may be therapeutically harnessed in human cancers to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jia Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Wu Zhengzhi Academician Workstation, Ningbo College of Health Sciences, Ningbo, 315800, China
| | - Xueqin Yan
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Wu Zhengzhi Academician Workstation, Ningbo College of Health Sciences, Ningbo, 315800, China
| | - Yongkai Cao
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Zhengzhi Wu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Wu Zhengzhi Academician Workstation, Ningbo College of Health Sciences, Ningbo, 315800, China.
| |
Collapse
|
2
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Duan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanyuan Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuxin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Jiangxi, 341000, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Wang Q, Jiang Y, Liao W, Zhu P. Comprehensive Pan-cancer Analysis Revealed CASP10 As a Promising Biomarker For Diverse Tumor Types. Int J Immunopathol Pharmacol 2025; 39:3946320251327620. [PMID: 40152300 PMCID: PMC11954456 DOI: 10.1177/03946320251327620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
We aimed to explore the comprehensive cancer landscape of Caspase-10 (CASP10). CASP10, a member of the caspase family, is located at the human chromosome locus 2q33-34. Studies have suggested its potential role in the development of certain cancers. To evaluate CASP10 expression in normal and pan-cancer tissues, we integrated data from The Cancer Genome Atlas (TCGA), GEO, Human Protein Atlas (HPA), and UALCAN databases. The diagnostic and prognostic significance of CASP10 was analyzed using Receiver Operating Characteristic (ROC), Cox regression, and Kaplan-Meier analysis. Correlations of CASP10 with clinical parameters were assessed via the Wilcoxon test, Kruskal-Wallis test, and logistic regression analysis. Genomic variations were explored with cBioPortal, GSCALite database, and UALCAN databases. LinkedOmics database was used to detect the function of CASP10 in pan-cancer. Interactions between CASP10 and the Tumor Immune Microenvironment (TIME) were investigated using TISIDB, TIMER2, and TISCH databases. The GSCALite database was utilized to assess the sensitivity of CASP10 to small-molecule drugs. In addition, Western Blotting (WB) was employed to detect the expression of the CASP10 in our clinical Liver Hepatocellular Carcinoma (LIHC) and Stomach Adenocarcinoma (STAD) cohorts. The transcription and protein expression of CASP10 significantly differ across cancer types, marking it as a biomarker for diagnosis and prognosis. Its expression correlated with certain clinical characteristics such as histological types and Alpha-Fetoprotein (AFP) levels. CASP10 gene exhibited a 2% alteration frequency across pan-cancer patients, with significant SNV and CNV profiles, and decreased methylation levels. CASP10 was closely related to the Nuclear Factor-κappa B (NF-κB), TNF, cell cycle, and JAK-STAT signal pathways. CASP10 showed correlation with immune components in the tumor microenvironment, including lymphocytes, immune stimulators, immune inhibitors, MHC molecules, chemokines, receptors, and Cancer-Associated Fibroblasts (CAFs). Importantly, CASP10 could predict the sensitivity of diverse anti-cancer drugs. Finally, WB analysis validated the overexpression of CASP10 in LIHC and STAD tissues. Our comprehensive bioinformatic analysis reveal the function of CASP10 on the diagnosis, prognosis, and progression of diverse cancer types.
Collapse
Affiliation(s)
- Qian Wang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- The Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yaping Jiang
- Department of Clinical Laboratory, Xi’an NO. 3 Hospital, Xi’an, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pengpeng Zhu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
5
|
Zhang B, Xiang L, Chen J, Zhang J, Dong R, Mo G, Wu F. GRN Activates TNFR2 to Promote Macrophage M2 Polarization Aggravating Mycobacterium Tuberculosis Infection. FRONT BIOSCI-LANDMRK 2024; 29:332. [PMID: 39344332 DOI: 10.31083/j.fbl2909332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The polarization of macrophages plays a critical role in the immune response to infectious diseases, with M2 polarization shown to be particularly important in various pathological processes. However, the specific mechanisms of M2 macrophage polarization in Mycobacterium tuberculosis (Mtb) infection remain unclear. In particular, the roles of Granulin (GRN) and tumor necrosis factor receptor 2 (TNFR2) in the M2 polarization process have not been thoroughly studied. OBJECTIVE To investigate the effect of macrophage M2 polarization on Mtb infection and the mechanism of GRN and TNFR2 in M2 polarization. METHODS Forty patients with pulmonary tuberculosis (PTB) and 40 healthy volunteers were enrolled in this study, and peripheral blood samples were taken to detect the levels of TNFR2 and GRN mRNA by Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR); monocytes were isolated and then assessed by Flow Cytometry (FC) for M1 and M2 macrophage levels. To further validate the function of TNFR2 in macrophage polarization, we used interleukin 4 (IL-4) to induce mouse monocyte macrophages RAW264.7 to M2 polarized state. The expression of TNFR2 was detected by Western Blot and RT-qPCR. Next, we constructed a GRN knockdown plasmid and transfected it into IL-4-induced mouse monocyte macrophage RAW264.7, and detected the expression of TNFR2, M1 macrophage-associated factors tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6), and the M2 macrophage-associated factors CD206, IL-10, and Arginase 1 (Arg1); Immunofluorescence staining was used to monitor the expression of CD86+ and CD206+, and FC was used to analyze the macrophage phenotype. Subsequently, immunoprecipitation was used to detect the binding role of GRN and TNFR2. Finally, the effects of GRN and TNFR2 in macrophage polarization were further explored by knocking down GRN and simultaneously overexpressing TNFR2 and observing the macrophage polarization status. RESULTS The results of the study showed elevated expression of TNFR2 and GRN and predominance of M2 type in macrophages in PTB patients compared to healthy volunteers (p < 0.05). Moreover, TNFR2 was highly expressed in M2 macrophages (p < 0.05). Additionally, GRN knockdown was followed by elevated expression of M1 polarization markers TNF-α, iNOS and IL-6 (p < 0.05), decreased levels of M2 polarization-associated factors CD206, IL-10 and Arg1 (p < 0.05), and macrophage polarization towards M1. Subsequently, we found that GRN binds to TNFR2 and that GRN upregulates TNFR2 expression (p < 0.05). In addition, knockdown of GRN elevated M1 polarization marker expression, decreased M2 polarization marker expression, and increased M1 macrophages and decreased M2 macrophages, whereas concurrent overexpression of TNFR2 decreased M1 polarization marker expression, elevated M2 polarization marker expression, and decreased M1 macrophages and increased M2 macrophages. CONCLUSION TNFR2 and GRN are highly expressed in PTB patients and GRN promotes macrophage M2 polarization by upregulating TNFR2 expression.
Collapse
Affiliation(s)
- Bingling Zhang
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Lan Xiang
- Department of Doctor-patient Communication, The First Affiliated Hospital of Ningbo University, 315010 Ningbo, Zhejiang, China
| | - Jun Chen
- Department of Doctor-patient Communication, The First Affiliated Hospital of Ningbo University, 315010 Ningbo, Zhejiang, China
| | - Jun Zhang
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Renliu Dong
- Disease Control and Prevention, Zhangqiao Branch, Ningbo Ninth Hospital Medical Health Group, 315000 Ningbo, Zhejiang, China
| | - Guolun Mo
- Beijing STEPPIN Technology Co., LTD., 100195 Beijing, China
| | - Feng Wu
- Infectious Disease Prevention and Control, Jiangbei Center for Disease Control and Prevention, 315000 Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Alim LF, Keane C, Souza-Fonseca-Guimaraes F. Molecular mechanisms of tumour necrosis factor signalling via TNF receptor 1 and TNF receptor 2 in the tumour microenvironment. Curr Opin Immunol 2024; 86:102409. [PMID: 38154421 DOI: 10.1016/j.coi.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Tumour necrosis factor (TNF) is a primary mediator of inflammatory processes by facilitating cell death, immune cell activation and triggering of inflammation. In the cancer context, research has revealed TNF as a multifaceted cytokine that can be both pro- or anti-tumorigenic depending on what context is observed. We explore the plethora of ways that TNF and its receptors manipulate the functional and phenotypic characteristics in the tumour microenvironment (TME) on both tumour cells and immune cells, promoting either tumour elimination or progression. Here, we discuss the latest cutting-edge TNF-focused biologics currently in clinical translation that modifies the TME to derive greater immune responses and therapeutic outcomes, and further give perspectives on the future of targeting TNF in the context of cancer by emerging technological approaches.
Collapse
Affiliation(s)
- Louisa F Alim
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
7
|
Jing Q, Wan Q, Nie Y, Luo J, Zhang X, Zhu L, Gui H, Li L, Wang C, Chen S, Wang M, Yuan H, Lv H, Pan R, Jing Q, Nie Y. Ansofaxine hydrochloride inhibits tumor growth and enhances Anti-TNFR2 in murine colon cancer model. Front Pharmacol 2023; 14:1286061. [PMID: 38161697 PMCID: PMC10755865 DOI: 10.3389/fphar.2023.1286061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: As psychoneuroimmunology flourishes, there is compelling evidence that depression suppresses the anti-tumor immune response, promotes the progression of cancer, and inhibits the effectiveness of cancer immunotherapy. Recent studies have reported that antidepressants can not only alleviate the depressant condition of cancer patients, but also strengthen the anti-tumor immunity, thus suppressing tumors. Tumor necrosis factor receptor 2 (TNFR2) antagonistic antibodies (Anti-TNFR2) targeting tumor-infiltrating regulatory T cells (Tregs) has achieved great results in preclinical studies, and with a favorable toxicity profile than existing immunotherapies, and is expected to become a new generation of more effective treatment strategies. Understanding the effects of combination therapy with antidepressants and Anti-TNFR2 may help design new strategies for cancer immunotherapy. Methods: We treated CT26, HCT116, MCA38 and SW620 colon cancer cells with fluoxetine (0-50 µM), ansofaxine hydrochloride (0-50 µM) and amitifadine hydrochloride (0-150 µM) to examine their effects on cell proliferation and apoptosis. We explored the antitumor effects of ansofaxine hydrochloride in combination with or without Anti-TNFR in subcutaneously transplanted CT26 cells in tumor-bearing mouse model. Antitumor effects were evaluated by tumor volume. NK cell, M1 macrophage cell, CD4+ T cell, CD8+ T cell, exhausted CD8+ T and regulatory T cell (Tregs) subtypes were measured by flow cytometry. 5-hydroxytryptamine, dopamine and norepinephrine levels were measured by ELISA. Results: Oral antidepression, ansofaxine hydrochloride, enhanced peripheral dopamine levels, promoted CD8+T cell proliferation, promoted intratumoral infiltration of M1 and NK cells, decreased the proportion of tumor-infiltrating exhausted CD8+T cells, and strengthened anti-tumor immunity, thereby inhibiting colon cancer growth. In combination therapy, oral administration of ansofaxine hydrochloride enhanced the efficacy of Anti-TNFR2, and produced long-term tumor control in with syngeneic colorectal tumor-bearing mice, which was attributable to the reduction in tumor-infiltrating Treg quantity and the recovery of CD8+ T cells function. Discussion: In summary, our data reveal the role of ansofaxine hydrochloride in modulating the anti-tumor immunity. Our results support that exhausted CD8+T is an important potential mechanism by which ansofaxine hydrochloride activates anti-tumor immunity and enhances anti-tumor effects of anti-TNFR2.
Collapse
Affiliation(s)
- Qianyu Jing
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Quan Wan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junqian Luo
- The First People’s Hospital of Jinzhong, Jinzhong, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang, China
| | - Huan Gui
- School of Medicine, Guizhou University, Guiyang, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang, China
| | - Chenglv Wang
- School of Medicine, Guizhou University, Guiyang, China
| | | | - Mengjiao Wang
- School of Medicine, Guizhou University, Guiyang, China
| | - Haohua Yuan
- School of Medicine, Guizhou University, Guiyang, China
| | - Hang Lv
- School of Medicine, Guizhou University, Guiyang, China
| | | | | | - Yingjie Nie
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
8
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|