1
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:378-396. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence supports CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology (Emeritus), Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
2
|
Marwedel B, De May H, Anderson L, Medina LY, Kennedy E, Flores E, O'Rourke J, Olewine M, Lagutina I, Fitzpatrick L, Shultz F, Kusewitt DF, Bartee E, Adams S, Noureddine A, Serda RE. TLR Agonist Nano Immune Therapy Clears Peritoneal and Systemic Ovarian Cancer. Adv Healthc Mater 2025; 14:e2402966. [PMID: 39478634 PMCID: PMC11912102 DOI: 10.1002/adhm.202402966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Indexed: 03/18/2025]
Abstract
Intraperitoneal (IP) administration of immunogenic mesoporous silica nanoparticles (iMSN) in a mouse model of metastatic ovarian cancer promotes the development of tumor-specific CD8+ T cells and protective immunity. IP delivery of iMSN functionalized with the Toll-like receptor (TLR) agonists polyethyleneimine (PEI), CpG oligonucleotide, and monophosphoryl lipid A (MPLA) stimulated rapid uptake by all peritoneal myeloid subsets. Myeloid cells quickly transported iMSN to milky spots and fat-associated lymphoid clusters (FALCs) present in tumor-burdened adipose tissues, leading to a reduction in suppressive T cells and an increase in activated memory T cells. Two doses of iMSN cleared or reduced ovarian and colorectal cancer and protected against future tumor engraftment. In contrast, subcutaneous (SC) and intravenous (IV) delivery of iMSN were without therapeutic effect in mice with peritoneal metastases, supporting the need for activation of regional immune cells. Remarkably, intraperitoneal delivery of iMSN cleared subcutaneously implanted ovarian cancer, supporting homing of antigen specific T cells to extraperitoneal tumor sites.
Collapse
Affiliation(s)
- Ben Marwedel
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Henning De May
- Department of Obstetrics & GynecologyUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Lauren Anderson
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Lorél Y. Medina
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Ellie Kennedy
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Erica Flores
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | | | - Marian Olewine
- Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNM87131USA
| | - Irina Lagutina
- Animal Models Shared ResourceUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Lillian Fitzpatrick
- Animal Models Shared ResourceUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Fred Shultz
- Human Tissue Repository & Tissue AnalysisUniversity of New Mexico Comprehensive Cancer CenterUniversity of New MexicoAlbuquerqueNM87131USA
- Department of PathologyUniversity of New Mexico Health Science CenterAlbuquerqueNMUSA
| | - Donna F. Kusewitt
- Human Tissue Repository & Tissue AnalysisUniversity of New Mexico Comprehensive Cancer CenterUniversity of New MexicoAlbuquerqueNM87131USA
- Department of PathologyUniversity of New Mexico Health Science CenterAlbuquerqueNMUSA
| | - Eric Bartee
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| | - Sarah Adams
- Department of Obstetrics & GynecologyUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM87131USA
| | - Achraf Noureddine
- Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueNM87131USA
| | - Rita E. Serda
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNM87131USA
| |
Collapse
|
3
|
Mano Y, Igarashi Y, Komori K, Hashimoto I, Watanabe H, Takahashi K, Kano K, Fujikawa H, Yamada T, Himuro H, Kouro T, Wei F, Tsuji K, Horaguchi S, Komahashi M, Oshima T, Sasada T. Characteristics and clinical significance of immune cells in omental milky spots of patients with gastric cancer. Front Immunol 2025; 16:1521278. [PMID: 39949777 PMCID: PMC11821591 DOI: 10.3389/fimmu.2025.1521278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
The omentum is a common site of peritoneal metastasis in various cancers, including gastric cancer. It contains immune cell aggregates known as milky spots, which provide a microenvironment for peritoneal immunity by regulating innate and adaptive immune responses. In this study, we investigated gene expression profiles in cells from omental milky spots of patients with gastric cancer (n = 37) by RNA sequencing analysis and classified the patients into four groups (G1-4). Notably, significant differences were observed between the groups in terms of macroscopic type, lymphatic invasion, venous invasion, and pathological stage (pStage). G3, which was enriched in genes related to acquired immunity, showed earlier tumor stages (macroscopic type 0, Ly0, V0, and pStage I) and a better prognosis. In contrast, G4 showed enrichment of genes related to neutrophils and innate immunity; G1 and G2 showed no enrichment of innate or adaptive immune-related genes, suggesting an immune desert microenvironment. Cytometric analysis revealed significantly more T and B cells and fewer neutrophils in G3. Accordingly, the immune microenvironment in omental milky spots may vary depending on the stage of gastric cancer progression. When univariate Cox proportional hazards regression models were used to search for prognostically relevant genes specific to G3, 23 potential prognostic genes were identified as common genes associated with relapse-free survival and overall survival. In addition, the multivariate Cox proportional hazards model using these prognostic genes and clinicopathological information showed that combining the B cell marker CD19 and Ly had a high predictive accuracy for prognosis. Based on this study's results, it is possible that tumor progression, such as lymphatic and/or venous infiltration of tumor cells, may affect the immune cell composition and proportions in omental milky spots of patients with gastric cancer and analysis of gene expression in omental milky spots may help to predict gastric cancer prognosis.
Collapse
Affiliation(s)
- Yasunobu Mano
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Keisuke Komori
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Itaru Hashimoto
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Hayato Watanabe
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Kosuke Takahashi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Kazuki Kano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Kayoko Tsuji
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shun Horaguchi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuru Komahashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| |
Collapse
|
4
|
Tsolakidis D, Zouzoulas D, Tzitzis P, Sofianou I, Theodoulidis V, Chatzistamatiou K, Karalis T, Topalidou M, Timotheadou E, Grimbizis G. The Role of Douglasectomy Instead of Random Biopsies in the Surgical Treatment of Presumed FIGO Stage I Ovarian Cancer. Cancers (Basel) 2025; 17:419. [PMID: 39941788 PMCID: PMC11816186 DOI: 10.3390/cancers17030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Douglasectomy is defined as the removal of the pelvic peritoneum of the entire pouch of Douglas. In presumed FIGO stage I ovarian cancer, isolated microscopic cancer cells might disseminate from the ovaries to their neighboring pelvic peritoneum. However, a simple hysterectomy with bilateral salpingo-oophorectomy and a staging procedure is the standard of care. This study aims to investigate the safety and feasibility of douglasectomy compared to random pelvic biopsies, and it is based on the survival of patients with early ovarian cancer. Methods: We retrospectively analyzed the records of patients with presumed 2018 FIGO stage I ovarian cancer who underwent surgery in the 1st Department of Obstetrics and Gynecology Clinic from 2012 to 2022. Patient characteristics and oncological and follow-up information were collected. Results: A total of 88 patients were categorized into two groups, namely Group A (27 patients) with douglasectomy and Group B (61 patients) with random biopsies. There was no statistically significant difference in age, BMI, comorbidities, FIGO stage, intraoperative blood loss, and ICU admittance between the two groups. Conversely, patients with en bloc hysterectomy-douglasectomy had statistically significant higher pre-operative CA-125 values, surgery duration, rate of postoperative complications, and hospital stay. Concerning survival rates, there was a statistically significant difference in disease-free survival (p = 0.033), but no difference was observed in overall survival (p = 0.66). Conclusions: En bloc removal of the pelvic peritoneum of the entire pouch of Douglas with the uterus is a safe and feasible technique during surgery for early ovarian cancer, which leads to improved disease-free survival and local control.
Collapse
Affiliation(s)
- Dimitrios Tsolakidis
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Dimitrios Zouzoulas
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Panagiotis Tzitzis
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Iliana Sofianou
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Vasileios Theodoulidis
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Kimon Chatzistamatiou
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Tilemachos Karalis
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Maria Topalidou
- Radiotherapy Department, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Eleni Timotheadou
- Department of Oncology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| | - Grigoris Grimbizis
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, 56429 Thessaloniki, Greece
| |
Collapse
|
5
|
Cui HT, Zhu QY, Zhao HW, Liu HL, Wang N. Pregnancy is associated with the prognosis of ovarian cancer patients with abdominal metastasis. Am J Cancer Res 2025; 15:168-181. [PMID: 39949936 PMCID: PMC11815367 DOI: 10.62347/jujq9225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 02/16/2025] Open
Abstract
This study aims to explore a new approach to reduce the recurrence risk and improve the prognosis of ovarian cancer (OC) patients with abdominal metastasis by analyzing the clinical characteristics and prognostic factors. A total of 292 OC patients with abdominal metastasis, treated at Henan Provincial People's Hospital between 2021 and 2023 were included in this retrospective study. Follow-up was conducted for one year to observe the recurrence, with 285 patients completing the observation. The patients were then categorized into relapsing and non-relapsing groups based on whether they experienced a relapse within one-year follow-up. Independent sample t-tests and χ 2 tests were used for inter-group comparison. Both univariate and multivariate logistic regression analyses were utilized to screen factors affecting recurrence. The variance inflation factor (VIF) was used to analyze whether the variables in the model had multicollinearity. Receiver Operating Characteristic (ROC) curves and nomographs were used to construct models for predicting one-year recurrence in OC patients with abdominal metastasis. Area under curve (AUC) of ROC and Hosmer-Lemeshow goodness of fit test were used to evaluate the accuracy of the model. The prediction model was verified by internal verification and external verification. The number of pregnancies, the number of births, diabetes mellitus, tumor diameter, tumor reduction combined with intraperitoneal chemotherapy, CA-125, HE-4, NLR, PLR, MLR showed association with patient recurrence. Logistic regression analysis revealed that lower pregnancy frequency and elevated levels of CA-125, HE-4, PLR and MLR were independent risk factors for increased risk of recurrence. In addition, the nomogram-based model demonstrated strong predictive accuracy for one-year recurrence. OC patients with abdominal metastasis present diverse clinical manifestations, among which fewer pregnancies and elevated levels of CA-125, HE-4, PLR, and MLR may be independent risk factors for increased risk of recurrence. Individualized interventions based on these prognostic factors are essential to reduce risk and enhance patient quality of life.
Collapse
Affiliation(s)
- Hai-Tao Cui
- Department of Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zhengzhou 450000, Henan, China
| | - Qian-Yong Zhu
- Department of Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zhengzhou 450000, Henan, China
| | - Hong-Wei Zhao
- Department of Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zhengzhou 450000, Henan, China
| | - Hui-Li Liu
- Department of Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zhengzhou 450000, Henan, China
| | - Na Wang
- Department of Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zhengzhou 450000, Henan, China
| |
Collapse
|
6
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Myeloid activation clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. J Exp Med 2024; 221:e20231967. [PMID: 39570374 PMCID: PMC11586802 DOI: 10.1084/jem.20231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/14/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bryan S. Manning
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Cancer Biology Graduate Program, Saint Joseph’s University, Philadelphia, PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yanfang P. Zhu
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daniel T. Claiborne
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
7
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
8
|
Braga EA, Burdennyy AM, Uroshlev LA, Zaichenko DM, Filippova EA, Lukina SS, Pronina IV, Astafeva IR, Fridman MV, Kazubskaya TP, Loginov VI, Dmitriev AA, Moskovtsev AA, Kushlinskii NE. Ten Hypermethylated lncRNA Genes Are Specifically Involved in the Initiation, Progression, and Lymphatic and Peritoneal Metastasis of Epithelial Ovarian Cancer. Int J Mol Sci 2024; 25:11843. [PMID: 39519394 PMCID: PMC11547154 DOI: 10.3390/ijms252111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Our work aimed to evaluate and differentiate the role of ten lncRNA genes (GAS5, HAND2-AS1, KCNK15-AS1, MAGI2-AS3, MEG3, SEMA3B-AS1, SNHG6, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in the development and progression of epithelial ovarian cancer (EOC). A representative set of clinical samples was used: 140 primary tumors from patients without and with metastases and 59 peritoneal metastases. Using MS-qPCR, we demonstrated an increase in methylation levels of all ten lncRNA genes in tumors compared to normal tissues (p < 0.001). Using RT-qPCR, we showed downregulation and an inverse relationship between methylation and expression levels for ten lncRNAs (rs < -0.5). We further identified lncRNA genes that were specifically hypermethylated in tumors from patients with metastases to lymph nodes (HAND2-AS1), peritoneum (KCNK15-AS1, MEG3, and SEMA3B-AS1), and greater omentum (MEG3, SEMA3B-AS1, and ZNF667-AS1). The same four lncRNA genes involved in peritoneal spread were associated with clinical stage and tumor extent (p < 0.001). Interestingly, we found a reversion from increase to decrease in the hypermethylation level of five metastasis-related lncRNA genes (MEG3, SEMA3B-AS1, SSTR5-AS1, ZEB1-AS1, and ZNF667-AS1) in 59 peritoneal metastases. This reversion may be associated with partial epithelial-mesenchymal transition (EMT) in metastatic cells, as indicated by a decrease in the level of the EMT marker, CDH1 mRNA (p < 0.01). Furthermore, novel mRNA targets and regulated miRNAs were predicted for a number of the studied lncRNAs using the NCBI GEO datasets and analyzed by RT-qPCR and transfection of SKOV3 and OVCAR3 cells. In addition, hypermethylation of SEMA3B-AS1, SSTR5-AS1, and ZNF667-AS1 genes was proposed as a marker for overall survival in patients with EOC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Leonid A. Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.A.U.); (M.V.F.)
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Iana R. Astafeva
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.A.U.); (M.V.F.)
| | - Tatiana P. Kazubskaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Aleksey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (D.M.Z.); (E.A.F.); (S.S.L.); (I.V.P.); (I.R.A.); (V.I.L.); (A.A.M.)
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
- Russian Medical Academy of Continuing Professional Education, 125993 Moscow, Russia
| | - Nikolay E. Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| |
Collapse
|
9
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
10
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Liu X, Ping G, Ji D, Wen Z, Chen Y. Reclassify High-Grade Serous Ovarian Cancer Patients Into Different Molecular Subtypes With Discrepancy Prognoses and Therapeutic Responses Based on Cancer-Associated Fibroblast-Enriched Prognostic Genes. Biomed Eng Comput Biol 2024; 15:11795972241274024. [PMID: 39221174 PMCID: PMC11365035 DOI: 10.1177/11795972241274024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in the metastasis and therapeutic response of high-grade serous ovarian cancer (HGSC). Our study intended to select HGSC patients with unfavorable prognoses and therapeutic responses based on CAF-enriched prognostic genes. The bulk RNA and single-cell RNA sequencing (scRNA-seq) data of tumor tissues were collected from the TCGA and GEO databases. The infiltrated levels of immune and stromal cells were estimated by multiple immune deconvolution algorithms and verified through immunohistochemical analysis. The univariate Cox regression analyses were used to identify prognostic genes. Gene Set Enrichment Analysis (GSEA) was conducted to annotate enriched gene sets. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore potential alternative drugs. We found the infiltered levels of CAFs were remarkedly elevated in advanced and metastatic HGSC tissues and identified hundreds of genes specifically enriched in CAFs. Then we selected 6 CAF-enriched prognostic genes based on which HGSC patients were reclassified into 2 subclusters with discrepancy prognoses. Further analysis revealed that the HGSC patients in cluster-2 tended to undergo poor responses to traditional chemotherapy and immunotherapy. Subsequently, we selected 24 novel potential therapeutic drugs for cluster-2 HGSC patients. Moreover, we discovered a positive correlation of infiltrated levels between CAFs and monocytes/macrophages in HGSC tissues. Collectively, our study successfully reclassified HGSC patients into 2 different subgroups that have discrepancy prognoses and responses to current therapeutic methods.
Collapse
Affiliation(s)
- Xiangxiang Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Guoqiang Ping
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongze Ji
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhifa Wen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Murphy B, Miyamoto T, Manning BS, Mirji G, Ugolini A, Kannan T, Hamada K, Zhu YP, Claiborne DT, Huang L, Zhang R, Nefedova Y, Kossenkov A, Veglia F, Shinde R, Zhang N. Intraperitoneal activation of myeloid cells clears ascites and reveals IL27-dependent regression of metastatic ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600597. [PMID: 38979222 PMCID: PMC11230450 DOI: 10.1101/2024.06.25.600597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Patients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of less than 30% due to persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity. β-glucan alone cleared ascites and eliminated fluid tumor cells by inducing intraperitoneal clotting in the fluid and Dectin-1-Syk-dependent NETosis in the omentum. In omentum tumors, BI expanded a novel subset of immunostimulatory IL27+ macrophages and neutralizing IL27 impaired BI efficacy in vivo. Moreover, BI directly induced IL27 secretion in macrophages where single agent treatment did not. Finally, BI extended mouse survival in a chemoresistant model and significantly improved chemotherapy response in a chemo-sensitive model. In summary, we propose a new therapeutic strategy for the treatment of metastatic OvCa.
Collapse
Affiliation(s)
- Brennah Murphy
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Taito Miyamoto
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Bryan S. Manning
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Gauri Mirji
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alessio Ugolini
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Toshitha Kannan
- Gene Expression & Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University, Japan
| | | | - Daniel T. Claiborne
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rugang Zhang
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yulia Nefedova
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew Kossenkov
- Gene Expression & Regulation Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Filippo Veglia
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rahul Shinde
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Nan Zhang
- Immunology, Microenvironment & Metastasis Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
13
|
Liu X, Gao R, Wu Q, Li G, Xu X, Li W, Liu P, Wang X, Cai J, Li M, Wang Z. ITGA7 loss drives the differentiation of adipose-derived mesenchymal stem cells to cancer-associated fibroblasts. Mol Carcinog 2024; 63:479-493. [PMID: 38174862 DOI: 10.1002/mc.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Cancer-associated fibroblasts (CAFs) represent a major cellular component of the tumor (pre-)metastatic niche and play an essential role in omental dissemination of ovarian cancer. The omentum is rich in adipose, and adipose-derived mesenchymal stem cells (ADSCs) have been identified as a source of CAFs. However, the molecular events driving the phenotype shift of ADSCs remain largely unexplored. In this research, we focus on integrins, transmembrane receptors that have been widely involved in cellular plasticity. We found that integrin α7 (ITGA7) was the only member of the integrin family that positively correlated with both overall survival and progression-free survival in ovarian cancer through GEPIA2. The immunohistochemistry signal of ITGA7 was apparent in the tumor stroma, and a lower omental ITGA7 level was associated with metastasis. Primary ADSCs were isolated from the omentum of patients with ovarian cancer and identified by cellular morphology, biomarkers, and multilineage differentiation. The conditional medium of ovarian cancer cells induced ITGA7 expression decrease and phenotypic changes in ADSCs. Downregulation of ITGA7 in primary omental ADSCs led to decrease in stemness properties and emerge of characteristic morphology and biomarkers of CAFs. Moreover, the conditioned medium of ADSCs with ITGA7 depletion exhibited enhanced abilities to improve the migration and invasion of ovarian cancer cells in vitro. Overall, these findings indicate that loss of ITGA7 may induce the differentiation of ADSCs to CAFs that contribute to a tumor-supportive niche.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoqing Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoman Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Obstetrics and Gynecology Department, Center for Reproductive Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Yan Z, Liu K, Xu P, Chen Z, Zhang P, Pei S, Cheng Q, Huang S, Li B, Lv J, Xu Z, Xu H, Yang L, Zhang D. ACLY promotes gastric tumorigenesis and accelerates peritoneal metastasis of gastric cancer regulated by HIF-1A. Cell Cycle 2023; 22:2288-2301. [PMID: 38009671 PMCID: PMC10730177 DOI: 10.1080/15384101.2023.2286805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Mounting evidence indicates the potential involvement of ATP-citrate lyase (ACLY) in the modulation of various cancer types. Nevertheless, the precise biological significance of ACLY in gastric cancer (GC) remains elusive. This study sought to elucidate the biological function of ACLY and uncover its influence on peritoneal metastasis in GC. The expression of ACLY was assessed using both real-time quantitative PCR and western blot techniques. To investigate the impact of ACLY on the proliferation of gastric cancer (GC) cells, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. The migratory and invasive abilities of GC were evaluated using wound healing and transwell assays. Additionally, a bioinformatics analysis was employed to predict the correlation between ACLY and HIF-1A. This interaction was subsequently confirmed through a chromatin immunoprecipitation (ChIP) assay. ACLY exhibited upregulation in gastric cancer (GC) as well as in peritoneal metastasis. Its overexpression was found to facilitate the proliferation and metastasis of GC cells in both in vitro and in vivo experiments. Moreover, ACLY was observed to play a role in promoting angiogenesis and epithelial-mesenchymal transition (EMT). Notably, under hypoxic conditions, HIF-1A levels were elevated, thereby acting as a transcription factor to upregulate ACLY expression. Under the regulatory influence of HIF-1A, ACLY exerts a significant impact on the progression of gastric cancer, thereby facilitating peritoneal metastasis.
Collapse
Affiliation(s)
- Zhengyuan Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengwei Chen
- Department of Surgery, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Nanjing, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center Cancer Hospital, Beijing, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|