1
|
Shende S, Rathored J, Budhbaware T. Role of metabolic transformation in cancer immunotherapy resistance: molecular mechanisms and therapeutic implications. Discov Oncol 2025; 16:453. [PMID: 40175681 PMCID: PMC11965038 DOI: 10.1007/s12672-025-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Immunotherapy in the treatment of cancer, with immune inhibitors helps in many cancer types. Many patients still encounter resistance to these treatments, though. This resistance is mediated by metabolic changes in the tumour microenvironment and cancer cells. The development of novel treatments to overcome resistance and boost immunotherapy's effectiveness depends on these metabolic changes. OBJECTIVE This review concentrates on the molecular mechanisms through which metabolic transformation contributes to cancer immunotherapy resistance. Additionally, research therapeutic approaches that target metabolic pathways to enhance immunotherapy for resistance. METHODS We used databases available on PubMed, Scopus, and Web of Science to perform a thorough review of peer-reviewed literature. focusing on the tumor microenvironment, immunotherapy resistance mechanisms, and cancer metabolism. The study of metabolic pathways covers oxidative phosphorylation, glycolysis, lipid metabolism, and amino acid metabolism. RESULTS An immunosuppressive tumour microenvironment is produced by metabolic changes in cancer cells, such as dysregulated lipid metabolism, enhanced glutaminolysis, and increased glycolysis (Warburg effect). Myeloid-derived suppressor cells and regulatory T cells are promoted, immune responses are suppressed, and T cell activity is impaired when lactate and other metabolites build up. changes in the metabolism of amino acids in the pathways for arginine and tryptophan, which are nutrients crucial for immune function. By enhancing their function in the tumour microenvironment, these metabolic alterations aid in resistance to immune checkpoint inhibitors. CONCLUSION Metabolic change plays a key role in cancer immunotherapy resistance. Gaining knowledge of metabolic processes can help develop efficient treatments that improve immunotherapy's effectiveness. In order to determine the best targets for therapeutic intervention, future studies should concentrate on patient-specific metabolic profiling.
Collapse
Affiliation(s)
- Sandesh Shende
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Jaishriram Rathored
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India.
| | - Tanushree Budhbaware
- Central Research Laboratory and Molecular Diagnostics, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| |
Collapse
|
2
|
Slattery K, Finlay DK, Darcy PK. La dolce vita: fueling chimeric antigen receptor (CAR) T cells with Glut1 to improve therapeutic efficacy. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00055. [PMID: 39816133 PMCID: PMC11731213 DOI: 10.1097/in9.0000000000000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of hematological cancers has marked a new era in cancer care, with seven products being FDA approved since 2017. However, challenges remain, and while profound effects are observed initially in myeloma, the majority of patients relapse, which is concomitant with poor CAR T cell persistence. Similarly, the efficacy of CAR T cell therapy is limited in solid tumors, largely due to tumor antigen heterogeneity, immune evasion mechanisms, and poor infiltration and persistence. In this recent study, Guerrero et al endeavor to improve the efficacy of human CAR T cells by overexpressing the glucose transporter GLUT1 and show that GLUT1 overexpressing CAR T cells have improved capacity to persist and control tumor burden in vivo.
Collapse
Affiliation(s)
- Karen Slattery
- School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences, Trinity College Dublin, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Phillip K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Fox AC, Blazeck J. Applying metabolic control strategies to engineered T cell cancer therapies. Metab Eng 2024; 86:250-261. [PMID: 39490640 PMCID: PMC11611646 DOI: 10.1016/j.ymben.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are an engineered immunotherapy that express synthetic receptors to recognize and kill cancer cells. Despite their success in treating hematologic cancers, CAR T cells have limited efficacy against solid tumors, in part due to the altered immunometabolic profile within the tumor environment, which hinders T cell proliferation, infiltration, and anti-tumor activity. For instance, CAR T cells must compete for essential nutrients within tumors, while resisting the impacts of immunosuppressive metabolic byproducts. In this review, we will describe the altered metabolic features within solid tumors that contribute to immunosuppression of CAR T cells. We'll discuss how overexpression of key metabolic enzymes can enhance the ability of CAR T cells to resist corresponding tumoral metabolic changes or even revert the metabolic profile of a tumor to a less inhibitory state. In addition, metabolic remodeling is intrinsically linked to T cell activity, differentiation, and function, such that metabolic engineering strategies can also promote establishment of more or less efficacious CAR T cell phenotypes. Overall, we will show how applying metabolic engineering strategies holds significant promise in improving CAR T cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Andrea C Fox
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA.
| |
Collapse
|
4
|
Puebla-Osorio N, Fowlkes NW, Barsoumian HB, Xega K, Srivastava G, Kettlun-Leyton C, Nizzero S, Voss T, Riad TS, Wong C, Huang A, Hu Y, Mitchell J, Kim M, Rafiq Z, He K, Sezen D, Hsu E, Masrorpour F, Maleki A, Leuschner C, Cortez MA, Oertle P, Loparic M, Plodinec M, Markman JL, Welsh JW. Enhanced tumor control and survival in preclinical models with adoptive cell therapy preceded by low-dose radiotherapy. Front Oncol 2024; 14:1407143. [PMID: 39445067 PMCID: PMC11496962 DOI: 10.3389/fonc.2024.1407143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Effective infiltration of chimeric antigen receptor T (CAR-T) cells into solid tumors is critical for achieving a robust antitumor response and improving therapeutic outcomes. While CAR-T cell therapies have succeeded in hematologic malignancies, their efficacy in solid tumors remains limited due to poor tumor penetration and an immunosuppressive tumor microenvironment. This study aimed to evaluate the potential of low-dose radiotherapy (LDRT) administered before T-cell therapy to enhance the antitumor effect by promoting CAR-T cell infiltration. We hypothesized that combining LDRT with T-cell therapy would improve tumor control and survival compared to either treatment alone. Methods We investigated this hypothesis using two NSG mouse models bearing GSU or CAPAN-2 solid tumors. The mice were treated with engineered CAR-T cells targeting guanyl cyclase-C (GCC) or mesothelin as monotherapy or in combination with LDRT. Additionally, we extended this approach to a C57BL/6 mouse model implanted with MC38-gp100+ cells, followed by adoptive transfer of pmel+ T cells before and after LDRT. Tumor growth and survival outcomes were monitored in all models. Furthermore, we employed atomic force microscopy (AFM) in a small cohort to assess the effects of radiotherapy on tumor stiffness and plasticity, exploring the role of tumor nanomechanics as a potential biomarker for treatment efficacy. Results Our results demonstrated enhanced tumor control and prolonged survival in mice treated with LDRT followed by T-cell therapy across all models. The combination of LDRT with CAR-T or pmel+ T-cell therapy led to superior tumor suppression and survival compared to monotherapy, highlighting the synergistic impact of the combined approach. Additionally, AFM analysis revealed significant changes in tumor stiffness and plasticity in response to LDRT, suggesting that the nanomechanical properties of the tumor may be predictive of therapeutic response. Discussion The findings of this study highlight the transformative potential of incorporating LDRT as a precursor to adoptive T-cell therapy in solid tumors. By promoting CAR-T and pmel+ T-cell infiltration into the tumor microenvironment, LDRT enhanced tumor control and improved survival outcomes, offering a promising strategy to overcome the challenges associated with CAR-T therapy in solid tumors. Additionally, the changes in tumor nanomechanics observed through AFM suggest that tumor stiffness and plasticity could be biomarkers for predicting treatment outcomes. These results support further investigation into the clinical application of this combined approach to improve the efficacy of cell-based therapies in patients with solid tumors.
Collapse
Affiliation(s)
- Nahum Puebla-Osorio
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristina Xega
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | | | - Claudia Kettlun-Leyton
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Tiffany Voss
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina Wong
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | - Ailing Huang
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yun Hu
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joylise Mitchell
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingee Kim
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zahid Rafiq
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Duygu Sezen
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Hsu
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aurian Maleki
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carola Leuschner
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Janet L. Markman
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | - James W. Welsh
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev 2024; 32:101250. [PMID: 38737799 PMCID: PMC11088187 DOI: 10.1016/j.omtm.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.
Collapse
Affiliation(s)
- Juliana Dias
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - John Garcia
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Giulia Agliardi
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
7
|
Lieberman MM, Tong JH, Odukwe NU, Chavel CA, Purdon TJ, Burchett R, Gillard BM, Brackett CM, McGray AJR, Bramson JL, Brentjens RJ, Lee KP, Olejniczak SH. Endogenous CD28 drives CAR T cell responses in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586084. [PMID: 38562904 PMCID: PMC10983979 DOI: 10.1101/2024.03.21.586084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.
Collapse
Affiliation(s)
- Mackenzie M. Lieberman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jason H. Tong
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nkechi U. Odukwe
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Colin A. Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Terence J. Purdon
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rebecca Burchett
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - A. J. Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jonathan L. Bramson
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Renier J. Brentjens
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kelvin P. Lee
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Wang L, Dou X, Xie L, Zhou X, Liu Y, Liu J, Liu X. Metabolic Landscape of Osteosarcoma: Reprogramming of Lactic Acid Metabolism and Metabolic Communication. FRONT BIOSCI-LANDMRK 2024; 29:83. [PMID: 38420794 DOI: 10.31083/j.fbl2902083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Lactic acid, previously regarded only as an endpoint of glycolysis, has emerged as a major regulator of tumor invasion, growth, and the tumor microenvironment. In this study, we aimed to explore the reprogramming of lactic acid metabolism relevant to osteosarcoma (OS) microenvironment by decoding the underlying lactic acid metabolic landscape of OS cells and intercellular signaling alterations. METHODS The landscape of OS metabolism was evaluated using single-cell gene expression data, lactic acid metabolism clustering, and screening of the hub genes in lactic acid metabolism of OS samples using transcriptome data. The role of the hub gene NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 6 (NDUFAF6) was validated with in vitro studies and patient experiments. RESULTS Single-cell RNA sequencing data validated a lactic acid metabolismhigh subcluster in OS. Further investigation of intercellular communications revealed a unique metabolic communication pattern between the lactic acid metabolismhigh subcluster and other subclusters. Next, two lactic acid metabolic reprogramming phenotypes were defined, and six lactic acid metabolism-related genes (LRGs), including the biomarker NDUFAF6, were screened in OS. In vitro studies and patient experiments confirmed that NDUFAF6 is a crucial lactic acid metabolism-associated gene in OS. CONCLUSIONS The patterns of lactic acid metabolism in OS suggested metabolic reprogramming phenotypes relevant to the tumor microenvironment (TME) and identified NDUFAF6 as an LRG prognostic biomarker.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| | - Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| | - Linzhen Xie
- Peking University Fourth School of Clinical Medicine, 100035 Beijing, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, 100084 Beijing, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, 100191 Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, 100191 Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, 100191 Beijing, China
| |
Collapse
|
9
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Wu X, Zhou Z, Cao Q, Chen Y, Gong J, Zhang Q, Qiang Y, Lu Y, Cao G. Reprogramming of Treg cells in the inflammatory microenvironment during immunotherapy: a literature review. Front Immunol 2023; 14:1268188. [PMID: 37753092 PMCID: PMC10518452 DOI: 10.3389/fimmu.2023.1268188] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Regulatory T cells (Treg), as members of CD4+ T cells, have garnered extensive attention in the research of tumor progression. Treg cells have the function of inhibiting the immune effector cells, preventing tissue damage, and suppressing inflammation. Under the stimulation of the tumor inflammatory microenvironment (IM), the reprogramming of Treg cells enhances their suppression of immune responses, ultimately promoting tumor immune escape or tumor progression. Reducing the number of Treg cells in the IM or lowering the activity of Treg cells while preventing their reprogramming, can help promote the body's anti-tumor immune responses. This review introduces a reprogramming mechanism of Treg cells in the IM; and discusses the regulation of Treg cells on tumor progression. The control of Treg cells and the response to Treg inflammatory reprogramming in tumor immunotherapy are analyzed and countermeasures are proposed. This work will provide a foundation for downregulating the immunosuppressive role of Treg in the inflammatory environment in future tumor immunotherapy.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhigang Zhou
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Gong
- School of Public Health, Nanchang University, Qianhu, Nanchang, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Yanfeng Lu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Liu S, Zhang Y. Challenges and interventions of chimeric antigen receptor-T cell therapy in solid tumors. Chin J Cancer Res 2023; 35:239-244. [PMID: 37440824 PMCID: PMC10334497 DOI: 10.21147/j.issn.1000-9604.2023.03.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Adoptive cellular therapy is rapidly improving immunotherapy in hematologic malignancies and several solid tumors. Remarkable clinical success has been achieved in chimeric antigen receptor (CAR)-T cell therapy which represents a paradigm-shifting strategy for the treatment of hematological malignancies. However, many challenges such as resistance, antigen heterogeneity, poor immune cell infiltration, immunosuppressive microenvironment, metabolic obstructive microenvironment, and T cell exhaustion remain as barriers to broader application especially in solid tumors. Encouragingly, the development of new approaches such as multidimensional omics and biomaterials technologies was aided to overcome these barriers. Here, in this perspective, we focus on the most recent clinical advancements, challenges, and strategies of immune cellular therapy in solid tumor treatment represented by CAR-T cell therapy, to provide new ideas to further overcome the bottleneck of immune cell therapy and anticipate future clinical advances.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|