1
|
Zaruba MM, Angermann R, Staggl S, Jeyakumar V, Mair S, Stöckl V, Neyer J, Maurer T, Ungericht M, Gavranovic-Novakovic J, Bauer A, Zehetner C, Messner M. Progerin mRNA Is Associated with Smoking and Signs of Increased Microvascular Damage in Patients with Diabetic Macular Edema. Int J Mol Sci 2025; 26:2099. [PMID: 40076719 PMCID: PMC11900628 DOI: 10.3390/ijms26052099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The premature aging disease Hutchinson-Gilford Syndrome (HGPS) is caused by defined mutations in the LMNA gene, resulting in the activation of a cryptic splice donor site, which leads to a defective truncated prelamin A protein called progerin. Notably, progerin expression has also been detected in non-mutated healthy individuals, and therefore, its involvement in the physiological aging process has been widely discussed. Since diabetes mellitus is associated with premature aging and increased cardiovascular mortality, we aimed to investigate the role of progerin expression in patients with diabetic retinopathy (DR). mRNA expression of progerin was analyzed in blood samples from 140 patients with DR who received anti-vascular endothelial growth factor (VEGF) therapy. Progerin mRNA levels were significantly lower in female compared to male patients (n = 42 vs. n = 98; 0.67 ± 0.19 vs. 0.89 ± 0.51, p = 0.006) and higher in patients with non-proliferative (NP)DR (n = 87 vs. n = 53; 0.9 ± 0.51 vs. 0.71 ± 0.29, p = 0.013) compared to those with proliferative (P)DR. Additionally, a positive correlation was found between progerin mRNA expression and the number of intravitreal anti-VEGF applications (n = 139, r = 0.21, p = 0.015), central macula thickness (CMT), (n = 137, r = 0.18, p = 0.036) and nicotine consumption (n = 105, r = 0.235, p = 0.002). The nuclear localization and significant upregulation of progerin mRNA and protein levels in dermal fibroblasts from HGPS donors emphasize its role in cellular aging mechanisms. Progerin mRNA levels were higher in patients with NPDR. CMT, number of intravitreal anti-VEGF therapy treatments, and cigarette consumption were positively related to progerin mRNA, suggesting an association with disease progression and premature aging.
Collapse
Affiliation(s)
- Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Reinhard Angermann
- Department of Ophthalmology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Department of Ophthalmology, LK Mistelbach/Gänserndorf, 2130 Mistelbach, Austria
| | - Simon Staggl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Vivek Jeyakumar
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Sofia Mair
- Department of Ophthalmology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Victoria Stöckl
- Department of Ophthalmology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Julia Neyer
- Department of Ophthalmology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Maurer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Maria Ungericht
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Axel Bauer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| | - Claus Zehetner
- Department of Ophthalmology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Moritz Messner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria (V.J.); (J.G.-N.)
| |
Collapse
|
2
|
Jobling AI, Greferath U, Dixon MA, Quiriconi P, Eyar B, van Koeverden AK, Mills SA, Vessey KA, Bui BV, Fletcher EL. Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes. Prog Retin Eye Res 2025; 106:101349. [PMID: 40020909 DOI: 10.1016/j.preteyeres.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Pialuisa Quiriconi
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Belinda Eyar
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Samuel A Mills
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar RA, El-Sheikh A, Wang Y, Gyoneva S, Cotleur AC, Cardona AE. CX3CR1-Fractalkine Dysregulation Affects Retinal GFAP Expression, Inflammatory Gene Induction, and LPS Response in a Mouse Model of Hypoxic Retinopathy. Int J Mol Sci 2025; 26:1131. [PMID: 39940901 PMCID: PMC11817233 DOI: 10.3390/ijms26031131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Diabetic retinopathy (DR) causes vision loss due to sustained inflammation and vascular damage. The vascular damage is evident by fibrinogen leakage, angiogenesis, and hypoxia. Neuronal regulation of microglia via the CX3CL1 (Fractalkine or FKN)-CX3CR1 pathway plays a significant role in retinal pathology. Defects in FKN or CX3CR1 exacerbate inflammation, vascular damage, and vision impairment. However, the contribution of hypoxic astrocytes to the pathological process of DR is unclear. A hypoxic model (7 days of systemic 7.5% O2) was utilized to induce retinal damage in adult mice in the absence of systemic inflammatory signals. This model induced vascular and microglial responses similar to 10 weeks of STZ-induced hyperglycemia. The goal of this study is to characterize retinal damage in WT and mice with defects in the FKN-CX3CR1 signaling axis and hence assess the impact of the microglial inflammatory responses to hypoxic retinopathy. Tissues were analyzed by immunostaining, RNA sequencing, and cytokine quantification. We found that CX3CR1 deficiency in hypoxic animals induced reactive astrogliosis and that Müller glial responses to hypoxia and systemic inflammation were dependent on FKN signaling. Exacerbated microglial reactivity to hypoxic conditions significantly altered the expression of HIF transcripts. Microglial dysregulation was found to reduce the anti-inflammatory response to hypoxic conditions, downregulate hypoxia-responsive gene expression, and restrained LPS-induced inflammatory responses. We found that microglia dysregulation alters the hypoxic response by inhibiting the upregulation of HIF2α/3α, increasing CD31 immunoreactivity, and altering the expression of ECM-associated transcripts such as type I, III, and XVIII collagens to hypoxic conditions.
Collapse
Affiliation(s)
- Colin Rorex
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Reina A. Saldivar
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Amira El-Sheikh
- Natural and Physical Science, Northwest Vista College, San Antonio, TX 78251, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Gutiérrez IL, Martín-Hernández D, MacDowell KS, García-Bueno B, Caso JR, Leza JC, Madrigal JLM. CX3CL1 Regulation of Gliosis in Neuroinflammatory and Neuroprotective Processes. Int J Mol Sci 2025; 26:959. [PMID: 39940727 PMCID: PMC11817243 DOI: 10.3390/ijms26030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Among the different chemokines, C-X3-C motif chemokine ligand 1 or CX3CL1, also named fractalkine, is one of the most interesting due to its characteristics, including its unique structure, not shared by any other chemokine, and its ability to function both in a membrane-bound form and in a soluble form, among others. However, undoubtedly, its most relevant characteristic from the neuroscientific point of view is its role as a messenger used by neurons to communicate with microglia. The study of the interaction between both cell types and the key role that CX3CL1 seems to play has facilitated the identification of CX3CL1 as a crucial modulator of microglial activation and a promising target in the fight against neuroinflammation. As a result, numerous studies have contributed to elucidate the involvement of CX3CL1 and its specific receptor CCX3CR1 in the progression of different neuroinflammatory and neurodegenerative processes, with Alzheimer's and Parkinson's diseases being the most studied ones. However, the different animal and cellular models used to reproduce the pathological conditions to be analyzed, as well as the difficulties inherent to studies performed on human samples, have hindered the collection of compatible results in many cases. In this review, we summarize some of the most relevant data describing the alterations found for the CX3CL1/CX3CR1 signaling axis in different neurodegenerative conditions in which neuroinflammation is known to play a relevant role.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José L. M. Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| |
Collapse
|
5
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
6
|
Hu A, Schmidt MHH, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024; 27:311-331. [PMID: 38564108 PMCID: PMC11303477 DOI: 10.1007/s10456-024-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Aiyan Hu
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar R, Faz B, Cardona AE. Astrogliosis in the GFAP-Cre ERT2:Rosa26 iDTR Mouse Model Does Not Exacerbate Retinal Microglia Activation or Müller Cell Gliosis under Hypoxic Conditions. Biomolecules 2024; 14:567. [PMID: 38785974 PMCID: PMC11117533 DOI: 10.3390/biom14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1β, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-β1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.
Collapse
Affiliation(s)
- Colin Rorex
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Sandra M. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Kaira A. Church
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Derek Rodriguez
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Reina Saldivar
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Brianna Faz
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Astrid E. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
8
|
Zhang Y, Zhou A. Macrophage activation contributes to diabetic retinopathy. J Mol Med (Berl) 2024; 102:585-597. [PMID: 38429382 DOI: 10.1007/s00109-024-02437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
9
|
Rodriguez D, Church KA, Pietramale AN, Cardona SM, Vanegas D, Rorex C, Leary MC, Muzzio IA, Nash KR, Cardona AE. Fractalkine isoforms differentially regulate microglia-mediated inflammation and enhance visual function in the diabetic retina. J Neuroinflammation 2024; 21:42. [PMID: 38311721 PMCID: PMC10840196 DOI: 10.1186/s12974-023-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kaira A Church
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Alicia N Pietramale
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra M Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Colin Rorex
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Micah C Leary
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Isabel A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
10
|
Pfaller AM, Kaplan L, Carido M, Grassmann F, Díaz-Lezama N, Ghaseminejad F, Wunderlich KA, Glänzer S, Bludau O, Pannicke T, Weber BHF, Koch SF, Bonev B, Hauck SM, Grosche A. The glucocorticoid receptor as a master regulator of the Müller cell response to diabetic conditions in mice. J Neuroinflammation 2024; 21:33. [PMID: 38273366 PMCID: PMC10809506 DOI: 10.1186/s12974-024-03021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.
Collapse
Affiliation(s)
- Anna M Pfaller
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Grassmann
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Farhad Ghaseminejad
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Bernhard H F Weber
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Boyan Bonev
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
11
|
Laudenberg N, Kinuthia UM, Langmann T. Microglia depletion/repopulation does not affect light-induced retinal degeneration in mice. Front Immunol 2024; 14:1345382. [PMID: 38288111 PMCID: PMC10822957 DOI: 10.3389/fimmu.2023.1345382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Reactive microglia are a hallmark of age-related retinal degenerative diseases including age-related macular degeneration (AMD). These cells are capable of secreting neurotoxic substances that may aggravate inflammation that leads to loss of photoreceptors and impaired vision. Despite their role in driving detrimental inflammation, microglia also play supporting roles in the retina as they are a crucial cellular component of the regulatory innate immune system. In this study, we used the colony stimulating factor 1 receptor (CSF1R)-antagonist PLX3397 to investigate the effects of microglia depletion and repopulation in a mouse model of acute retinal degeneration that mimics some aspects of dry AMD. Our main goal was to investigate whether microglia depletion and repopulation affects the outcome of light-induced retinal degeneration. We found that microglia depletion effectively decreased the expression of several key pro-inflammatory factors but was unable to influence the extent of retinal degeneration as determined by optical coherence tomography (OCT) and histology. Interestingly, we found prominent cell debris accumulation in the outer retina under conditions of microglia depletion, presumably due to the lack of efficient phagocytosis that could not be compensated by the retinal pigment epithelium. Moreover, our in vivo experiments showed that renewal of retinal microglia by repopulation did also not prevent rapid microglia activation or preserve photoreceptor death under conditions of light damage. We conclude that microglia ablation strongly reduces the expression of pro-inflammatory factors but cannot prevent photoreceptor loss in the light-damage paradigm of retinal degeneration.
Collapse
Affiliation(s)
- Nils Laudenberg
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|