1
|
Hernandez-Galicia G, Gomez-Morales L, Lopez-Bailon LU, Valdovinos-Torres H, Contreras-Ochoa CO, Díaz Benítez CE, Martinez-Barnetche J, Alpuche-Aranda C, Ortiz-Navarrete V. Presence of SARS-CoV-2-specific T cells before vaccination in the Mexican population. J Leukoc Biol 2024; 116:95-102. [PMID: 38717738 DOI: 10.1093/jleuko/qiae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/30/2024] Open
Abstract
The immune response to SARS-CoV-2 has been extensively studied following the pandemic outbreak in 2020; however, the presence of specific T cells against SARS-CoV-2 before vaccination has not been evaluated in Mexico. In this study, we estimated the frequency of T CD4+ and T CD8+ cells that exhibit a specific response to S (spike) and N (nucleocapsid) proteins in a Mexican population. We collected 78 peripheral blood samples from unvaccinated subjects, and the presence of antibodies against spike (RBD) and N protein was determined. Peripheral blood mononuclear cells were isolated and stimulated with a pool of S or N protein peptides (Wuhan-Hu-1 strain). IL-1β, IL-4, IL-6, IL-10, IL-2, IL-8, TNF-α, IFN-γ, and GM-CSF levels were quantified in the supernatant of the activated cells, and the cells were stained to assess the activation and memory phenotypes. Differential activation frequency dependent on serological status was observed in CD4+ cells but not in CD8+ cells. The predominantly activated population was the central memory T CD4+ cells. Only 10% of the population exhibited the same phenotype with respect to the response to nucleocapsid peptides. The cytokine profile differed between the S and N responses. S peptides induced a more proinflammatory response compared with the N peptides. In conclusion, in a Mexican cohort before vaccination, there was a significant response to the S and N SARS-CoV-2 proteins resulting from previous infections with seasonal coronaviruses or previous undetected exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Gabriela Hernandez-Galicia
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
| | - Luis Gomez-Morales
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Manuel Carpio and Plan de Ayala St, 11340, Mexico City, Mexico
| | - Luis Uriel Lopez-Bailon
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Manuel Carpio and Plan de Ayala St, 11340, Mexico City, Mexico
| | - Humberto Valdovinos-Torres
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Carla O Contreras-Ochoa
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Cinthya Estefhany Díaz Benítez
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Jesus Martinez-Barnetche
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Celia Alpuche-Aranda
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
| |
Collapse
|
2
|
Xie Y, Xia Y, Xu H, Wang J, Zhang W, Li L, Liu Z. Analysis of related factors of plasma antibody levels in patients with severe and critical COVID-19. Sci Rep 2024; 14:2581. [PMID: 38297067 PMCID: PMC10831068 DOI: 10.1038/s41598-024-52572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to impact global public health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become less virulent as it mutates, prompting China to ease restrictions at the end of 2022. With the complete reopening, a surge in COVID-19 cases has ensued. Therefore, we conducted a study to explore the correlation between plasma antibody levels and baseline conditions or clinical outcomes in severe and critical patients. We collected the basic information of 79 included patients. Enzyme-linked immunosorbent assay (ELISA) tests were performed on plasma samples. The receptor-binding domain (RBD) IgG antibody level of the mild group was significantly higher than that of the severe/critical group (P = 0.00049). And in the severe/critical group, there existed an association between plasma antibody levels and age (P < 0.001, r = - 0.471), as well as plasma antibody levels and vaccination status (P = 0.00147, eta2 = 0.211). Besides, the level of plasma antibody seemed to be moderately correlated with the age, indicating the need for heightened attention to infections in the elderly. And plasma antibody levels were strongly associated with vaccination status in the severe/critical patients.
Collapse
Affiliation(s)
- Yudi Xie
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan Province, People's Republic of China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, Sichuan Province, People's Republic of China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai, People's Republic of China
| | - Haixia Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan Province, People's Republic of China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, Sichuan Province, People's Republic of China
| | - Jue Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan Province, People's Republic of China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, Sichuan Province, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Second Military Medical University, Shanghai, People's Republic of China
| | - Ling Li
- Department of Blood Transfusion, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Qingyang District, Chengdu, Sichuan Province, People's Republic of China.
- College of Public, Hygiene of Anhui Medical University, Hefei, Anhui Province, People's Republic of China.
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan Province, People's Republic of China.
- College of Public, Hygiene of Anhui Medical University, Hefei, Anhui Province, People's Republic of China.
| |
Collapse
|
3
|
Thomas J, Mughal F, Roper KJ, Kotsiri A, Albalawi W, Alshehri A, Reddy YBS, Mukherjee S, Pollakis G, Paxton WA, Hoptroff M. Development of a pseudo-typed virus particle based method to determine the efficacy of virucidal agents. Sci Rep 2024; 14:2174. [PMID: 38273020 PMCID: PMC10810821 DOI: 10.1038/s41598-024-52177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
The ongoing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has highlighted the threat that viral outbreaks pose to global health. A key tool in the arsenal to prevent and control viral disease outbreaks is disinfection of equipment and surfaces with formulations that contain virucidal agents (VA). However, assessment of the efficacy of virus inactivation often requires live virus assays or surrogate viruses such as Modified Vaccinia Virus Ankara (MVA), which can be expensive, time consuming and technically challenging. Therefore, we have developed a pseudo-typed virus (PV) based approach to assess the inactivation of enveloped viruses with a fast and quantitative output that can be adapted to emerging viruses. Additionally, we have developed a method to completely remove the cytotoxicity of virucidal agents while retaining the required sensitivity to measure PV infectivity. Our results indicated that the removal of cytotoxicity was an essential step to accurately measure virus inactivation. Further, we demonstrated that there was no difference in susceptibility to virus inactivation between PVs that express the envelopes of HIV-1, SARS-CoV-2, and Influenza A/Indonesia. Therefore, we have developed an effective and safe alternative to live virus assays that enables the rapid assessment of virucidal activity for the development and optimization of virucidal reagents.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
| | - Farah Mughal
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Kelly J Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Aurelia Kotsiri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Yugandhar B S Reddy
- Unilever Research & Development Centre, 64 Main Road, Whitefield, Bangalore, Karnataka, 560066, India
| | - Sayandip Mukherjee
- Unilever Research & Development Centre, 64 Main Road, Whitefield, Bangalore, Karnataka, 560066, India
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Bebington, Wirral, CH63 3JW, UK.
| |
Collapse
|
4
|
Roper KJ, Thomas J, Albalawi W, Maddocks E, Dobson S, Alshehri A, Barone FG, Baltazar M, Semple MG, Ho A, Turtle L, Paxton WA, Pollakis G. Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera. Sci Rep 2023; 13:15014. [PMID: 37697014 PMCID: PMC10495436 DOI: 10.1038/s41598-023-41928-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.
Collapse
Affiliation(s)
- Kelly J Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Emily Maddocks
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Susan Dobson
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Francesco G Barone
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, L69 3BX, UK
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Malcolm G Semple
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Liverpool, UK
| | - Antonia Ho
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Lance Turtle
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK.
| |
Collapse
|
5
|
Uzun G, Müller R, Althaus K, Becker M, Marsall P, Junker D, Nowak-Harnau S, Schneiderhan-Marra N, Klüter H, Schrezenmeier H, Bugert P, Bakchoul T. Correlation between Clinical Characteristics and Antibody Levels in COVID-19 Convalescent Plasma Donor Candidates. Viruses 2023; 15:1357. [PMID: 37376656 DOI: 10.3390/v15061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) with high neutralizing antibodies has been suggested in preventing disease progression in COVID-19. In this study, we investigated the relationship between clinical donor characteristics and neutralizing anti-SARS-CoV-2 antibodies in CCP donors. COVID-19 convalescent plasma donors were included into the study. Clinical parameters were recorded and anti-SARS-CoV-2 antibody levels (Spike Trimer, Receptor Binding Domain (RBD), S1, S2 and nucleocapsid protein) as well as ACE2 binding inhibition were measured. An ACE2 binding inhibition < 20% was defined as an inadequate neutralization capacity. Univariate and multivariable logistic regression analysis was used to detect the predictors of inadequate neutralization capacity. Ninety-one CCP donors (56 female; 61%) were analyzed. A robust correlation between all SARS-CoV-2 IgG antibodies and ACE2 binding inhibition, as well as a positive correlation between donor age, body mass index, and a negative correlation between time since symptom onset and antibody levels were found. We identified time since symptom onset, normal body mass index (BMI), and the absence of high fever as independent predictors of inadequate neutralization capacity. Gender, duration of symptoms, and number of symptoms were not associated with SARS-CoV-2 IgG antibody levels or neutralization. Neutralizing capacity was correlated with SARS-CoV-2 IgG antibodies and associated with time since symptom onset, BMI, and fever. These clinical parameters can be easily incorporated into the preselection of CCP donors.
Collapse
Affiliation(s)
- Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Patrick Marsall
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
- Institute for Transfusion Medicine and University Hospital Ulm, University of Ulm, 89081 Ulm, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| |
Collapse
|