1
|
Engels P, Szolek A, Hörner S, Syrigos GV, Hebbel K, Schmidtke M, Zhou M, Mateo-Tortola M, Schönfeld C, Stefanczyk SA, Wolter K, Babaei S, Schindler M, Claassen M, Dauch D, Zender L, Tapía-Abellán A, Weber ANR. Actionable heterogeneity of hepatocellular carcinoma therapy-induced senescence. Cancer Immunol Immunother 2025; 74:207. [PMID: 40374812 DOI: 10.1007/s00262-025-04060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Therapy-induced senescence (TIS) is a stable cell cycle arrest in cancerous cells favoring immune control upon immune cell recruitment and activation via a senescence-associated secretory phenotype (SASP). Numerous studies have investigated the therapeutic applicability of TIS in hepatocellular carcinoma (HCC), a frequent cancer with high morbidity and mortality. Despite these efforts, a comprehensive understanding of how TIS may expose vulnerabilities specifically for immunotherapies, a potent means of cancer therapy, in HCC remains incomplete. Therefore, we conducted systematic studies to carefully characterize actionable and shared SASP- or other senescence-associated molecular parameters of TIS. We systematically compared the TIS inducers, etoposide and alisertib with a novel TIS inducer, CX5461, for their effects on SASP, surfaceome and innate immune clearance of representative human HCC cell lines. Surprisingly, all three compounds induced both metastasis surface antigens but also immunotherapeutically tractable antigens like CD95 (Fas), CD276 (B7-H3) and CD340 (Her2). This was verified in four representative HCC cell lines and publicly available datasets of HCC. Interestingly, alisertib, etoposide and CX5461 rendered senescent HCC vulnerable to be targeted by either T-cell-engaging bispecific antibodies or CAR NK cells. Collectively, our study indicates that heterogenous, but selective features of HCC senescence may be exploited by different immunotherapeutic approaches.
Collapse
Affiliation(s)
- Pujan Engels
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Andras Szolek
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Sebastian Hörner
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Georgios Vavouras Syrigos
- Department of Medical Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- DZIF Partner Site Tübingen, Tübingen, Germany
| | - Kim Hebbel
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Michelle Schmidtke
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Min Zhou
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Caroline Schönfeld
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Sylwia Anna Stefanczyk
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Katharina Wolter
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sepideh Babaei
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Michael Schindler
- Department of Medical Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- DZIF Partner Site Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Daniel Dauch
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lars Zender
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ana Tapía-Abellán
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Cluster of Excellence 2124 CMFI, Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Mielcarska S, Kot A, Kula A, Dawidowicz M, Sobków P, Kłaczka D, Waniczek D, Świętochowska E. B7H3 in Gastrointestinal Tumors: Role in Immune Modulation and Cancer Progression: A Review of the Literature. Cells 2025; 14:530. [PMID: 40214484 PMCID: PMC11988818 DOI: 10.3390/cells14070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
B7-H3 (CD276), a member of the B7 immune checkpoint family, plays a critical role in modulating immune responses and has emerged as a promising target in cancer therapy. It is highly expressed in various malignancies, where it promotes tumor evasion from T cell surveillance and contributes to cancer progression, metastasis, and therapeutic resistance, showing a correlation with the poor prognosis of patients. Although its receptors were not fully identified, B7-H3 signaling involves key intracellular pathways, including JAK/STAT, NF-κB, PI3K/Akt, and MAPK, driving processes crucial for supporting tumor growth such as cell proliferation, invasion, and apoptosis inhibition. Beyond immune modulation, B7-H3 influences cancer cell metabolism, angiogenesis, and epithelial-to-mesenchymal transition, further exacerbating tumor aggressiveness. The development of B7-H3-targeting therapies, including monoclonal antibodies, antibody-drug conjugates, and CAR-T cells, offers promising avenues for treatment. This review provides an up-to-date summary of the B7H3 mechanisms of action, putative receptors, and ongoing clinical trials evaluating therapies targeting B7H3, focusing on the molecule's role in gastrointestinal tumors.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Piotr Sobków
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Daria Kłaczka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| |
Collapse
|
3
|
Zhou S, Hong M, Zhao D, Li W, Yuan X, Wang Y, Li H, Yang Y, Jin T, Pan J. Reprogramming the Tumor Immune Microenvironment with ICAM-1-Targeted Antibody‒Drug Conjugates and B7-H3-CD3 Bispecific Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415577. [PMID: 39996528 PMCID: PMC12021053 DOI: 10.1002/advs.202415577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Reprogramming the tumor immune microenvironment (TIM) plays an important role in promoting the reversal of immune "cold" tumors into "hot" inflammatory tumors. Improving drug targeting, blocking immune checkpoints, and promoting the activation of immune cells are crucial for reprogramming the TIM. Here, an intercellular adhesion molecule 1-targeted antibody‒drug conjugate in combination with a B7-H3-CD3 bispecific antibody is selected for TIM reprogramming, which improved the efficacy of triple-negative breast cancer immunotherapy. This combination therapy improves drug targeting, blocks immune checkpoint pathways, and activates effector T cells to release cytokines, leading to immunogenic cell death and the release of tumor-associated antigens. This effect promotes the maturation of dendritic cells, infiltration and activation of cytotoxic CD8+ T cells, repolarization of M1-type macrophages, and reduction of M2-type macrophages, immune suppressor Tregs, and MDS cells, thereby reprogramming the TIM. In addition, this innovative strategy promotes the accumulation of immune cells at metastasis sites and significantly impedes the progression of lung metastatic lesions. Overall, this study provides novel insights for reprogramming the TIM using novel immunotherapeutic strategies that leverage the synergistic effects of antibody-drug conjugates and bispecific antibodies.
Collapse
Affiliation(s)
- Shoubing Zhou
- Department of Breast OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230031China
- Department of Breast OncologyAnhui Provincial Cancer HospitalHefeiAnhui230031China
| | - Mengyu Hong
- Laboratory of Structural ImmunologyCAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Dan Zhao
- Laboratory of Structural ImmunologyCAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Wenyu Li
- Department of Breast OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230031China
- Department of Breast OncologyAnhui Provincial Cancer HospitalHefeiAnhui230031China
| | - Xiaolong Yuan
- Department of Breast OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230031China
- Department of Breast OncologyAnhui Provincial Cancer HospitalHefeiAnhui230031China
| | - Yinghong Wang
- Department of Breast OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230031China
- Department of Breast OncologyAnhui Provincial Cancer HospitalHefeiAnhui230031China
| | - Hualong Li
- Department of Tumor RadiotherapyPeople Hospital of Fengyang CountyChuzhouAnhui233100China
| | - Yang Yang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
- Department of OncologySuzhou Hospital of Anhui Medical UniversitySuzhou234000China
| | - Tengchuan Jin
- Laboratory of Structural ImmunologyCAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineCenter for Advanced Interdisciplinary Science and Biomedicine of IHMUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Institute of Health and Medicine, Hefei Comprehensive National Science CenterHefeiAnhuiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science & Technology of ChinaHefei230027China
- Clinical Research Hospital of the Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefei230001China
| | - Jing Pan
- Department of Breast OncologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230031China
- Department of Breast OncologyAnhui Provincial Cancer HospitalHefeiAnhui230031China
| |
Collapse
|
4
|
Gu Y, Zhao Q. Clinical Progresses and Challenges of Bispecific Antibodies for the Treatment of Solid Tumors. Mol Diagn Ther 2024; 28:669-702. [PMID: 39172329 PMCID: PMC11512917 DOI: 10.1007/s40291-024-00734-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
In recent years, bispecific antibodies (BsAbs) have emerged as a promising therapeutic strategy against tumors. BsAbs can recruit and activate immune cells, block multiple signaling pathways, and deliver therapeutic payloads directly to tumor sites. This review provides a comprehensive overview of the recent advances in the development and clinical application of BsAbs for the treatment of solid tumors. We discuss the different formats, the unique mechanisms of action, and the clinical outcomes of the most advanced BsAbs in solid tumor therapy. Several studies have also analyzed the clinical progress of bispecific antibodies. However, this review distinguishes itself by exploring the challenges associated with bispecific antibodies and proposing potential solutions. As the field progresses, BsAbs hold promise to redefine cancer treatment paradigms and offer new hope to patients with solid tumors.
Collapse
Affiliation(s)
- Yuheng Gu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
5
|
Hagelstein I, Wessling L, Rochwarger A, Zekri L, Klimovich B, Tegeler CM, Jung G, Schürch CM, Salih HR, Lutz MS. Targeting CD276 for T cell-based immunotherapy of breast cancer. J Transl Med 2024; 22:902. [PMID: 39367484 PMCID: PMC11452943 DOI: 10.1186/s12967-024-05689-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Christian M Schürch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Perovic D, Dusanovic Pjevic M, Perovic V, Grk M, Rasic M, Milickovic M, Mijovic T, Rasic P. B7 homolog 3 in pancreatic cancer. World J Gastroenterol 2024; 30:3654-3667. [PMID: 39193002 PMCID: PMC11346158 DOI: 10.3748/wjg.v30.i31.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Despite advances in cancer treatment, pancreatic cancer (PC) remains a disease with high mortality rates and poor survival outcomes. The B7 homolog 3 (B7-H3) checkpoint molecule is overexpressed among many malignant tumors, including PC, with low or absent expression in healthy tissues. By modulating various immunological and nonimmunological molecular mechanisms, B7-H3 may influence the progression of PC. However, the impact of B7-H3 on the survival of patients with PC remains a subject of debate. Still, most available scientific data recognize this molecule as a suppressive factor to antitumor immunity in PC. Furthermore, it has been demonstrated that B7-H3 stimulates the migration, invasion, and metastasis of PC cells, and enhances resistance to chemotherapy. In preclinical models of PC, B7-H3-targeting monoclonal antibodies have exerted profound antitumor effects by increasing natural killer cell-mediated antibody-dependent cellular cytotoxicity and delivering radioisotopes and cytotoxic drugs to the tumor site. Finally, PC treatment with B7-H3-targeting antibody-drug conjugates and chimeric antigen receptor T cells is being tested in clinical studies. This review provides a comprehensive analysis of all PC-related studies in the context of B7-H3 and points to deficiencies in the current data that should be overcome by future research.
Collapse
Affiliation(s)
- Dijana Perovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| | - Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| |
Collapse
|
7
|
Stefańczyk SA, Hayn C, Heitmann J, Jung S, Zekri L, Märklin M. Expression and Prognostic Value of a Novel B7-H3 (CD276) Antibody in Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:2455. [PMID: 39001517 PMCID: PMC11240323 DOI: 10.3390/cancers16132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Despite recent advances in immunophenotyping, the prognosis of acute myeloid leukemia (AML) is still mainly estimated using age and genetic markers. As the genetic heterogeneity of AML patients is high, flow cytometry-based classification with appropriate biomarkers can efficiently complement risk stratification and treatment selection. An increased expression of B7-H3 (CD276), an immune checkpoint protein, has been reported and associated with poor prognosis. However, the available data are limited and heterogeneous. Here, we used a novel, proprietary murine anti-B7-H3 8H8 antibody for the flow cytometric analysis of B7-H3 expression in AML blasts from 77 patients. Our antibody reliably detected substantial B7-H3 expression in 62.3% of AML patients. B7-H3 expression was higher in the monocytic French-American-British (FAB) M5 group and in intermediate and poor risk patients according to the European Leukemia Network. Using receiver operating characteristics (ROCs), we identified a specific fluorescence intensity cut-off of 4.45 to discriminate between B7-H3high and B7-H3low expression. High B7-H3 expression was associated with shorter overall survival (OS) and progression-free survival (PFS). In conclusion, we have developed a novel B7-H3 antibody that serves as a new tool for the detection of B7-H3 expression in AML and may help to facilitate risk stratification and treatment selection in AML patients.
Collapse
Affiliation(s)
- Sylwia A. Stefańczyk
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.A.S.); (C.H.); (J.H.); (S.J.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Clara Hayn
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.A.S.); (C.H.); (J.H.); (S.J.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Jonas Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.A.S.); (C.H.); (J.H.); (S.J.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Susanne Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.A.S.); (C.H.); (J.H.); (S.J.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Department of Peptide−based Immunotherapy, Institute of Immunology, University and University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.A.S.); (C.H.); (J.H.); (S.J.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.A.S.); (C.H.); (J.H.); (S.J.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Holzmayer SJ, Liebel K, Hagelstein I, Salih HR, Märklin M. The bispecific B7H3xCD3 antibody CC-3 induces T cell immunity against bone and soft tissue sarcomas. Front Immunol 2024; 15:1391954. [PMID: 38765008 PMCID: PMC11099233 DOI: 10.3389/fimmu.2024.1391954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.
Collapse
Affiliation(s)
- Samuel J. Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kai Liebel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Shen B, Mei J, Xu R, Cai Y, Wan M, Zhou J, Ding J, Zhu Y. B7-H3 is associated with the armored-cold phenotype and predicts poor immune checkpoint blockade response in melanoma. Pathol Res Pract 2024; 256:155267. [PMID: 38520953 DOI: 10.1016/j.prp.2024.155267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Melanoma is the most suitable tumor type for immunotherapy, but not all melanoma patients could respond to immunotherapy. B7 homolog 3 (B7-H3) belongs to the B7 family and is overexpressed in a number of malignant tumors, but the expression pattern of B7-H3 in melanoma has not been well summarized. The expression of B7-H3 was investigated in melanoma and its correlations with features of the tumor microenvironment (TME) by using various public databases, including the Cancer Genome Atlas (TCGA), the GEPIA, and the Human Protein Atlas databases. In addition, the in-house melanoma tissue microarray was applied to validate the results from public databases. Based on the public and in-house cohorts, we found that B7-H3 was overexpressed in melanoma tumor tissues and high B7-H3 expression was related to poor clinical outcome. Moreover, B7-H3 was negatively correlated with levels of tumor-infiltrating lymphocytes (TILs) and positively correlated with collagen infiltration. With clinical translational value, the predictive value of B7-H3 for conventional immunotherapy was detected using the Kaplan-Meier plotter tool, and the results showed that melanoma patients with high B7-H3 expression were insensitive to anti-PD-1 and anti-CTLA-4 immunotherapy. In conclusion, we first investigate the expression of B7-H3 in melanoma and its correlations with the TME features, and indicate B7-H3 as a promising therapeutic target in melanoma patients that are insensitive to conventional immunotherapy.
Collapse
Affiliation(s)
- Bozhi Shen
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Yun Cai
- Department of Laboratory Medicine, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| | - Mengyun Wan
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ji Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
10
|
Lutz MS, Wang K, Jung G, Salih H, Hagelstein I. An Fc-modified monoclonal antibody as novel treatment option for pancreatic cancer. Front Immunol 2024; 15:1343929. [PMID: 38322253 PMCID: PMC10845339 DOI: 10.3389/fimmu.2024.1343929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Kevin Wang
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department of Immunology, Eberhard Karls Universität Tübingen, Tuebingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|