1
|
Chidambaram D, Subashini V, Nanthanalaxmi M, Saranya I, Selvamurugan N. Regulation of matrix metalloproteinase-13 in cancer: Signaling pathways and non-coding RNAs in tumor progression and therapeutic targeting. World J Clin Oncol 2025; 16:105996. [DOI: 10.5306/wjco.v16.i6.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/11/2025] [Accepted: 05/18/2025] [Indexed: 06/20/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are essential enzymes involved in extracellular matrix degradation and remodeling. Such processes are integral to normal tissue homeostasis and several pathological conditions such as cancer. Among these MMPs, MMP-13 plays a key role in cancer progression, driving tumor invasion, metastasis, and angiogenesis. Despite significant advancements in understanding its biology, therapeutic targeting of MMP-13 remains challenging owing to its complex and multifaceted regulatory mechanisms. Recent studies have underscored the pivotal role of non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs, and circular RNAs, in modulating MMP-13 expression. This review provides a comprehensive analysis of MMP-13 regulation by several signaling pathways, the influence of ncRNAs on these signaling pathways, and MMP-13 expression during cancer progression and metastasis. Furthermore, we explored the clinical relevance of ncRNA-mediated regulatory networks, highlighting their potential as diagnostic biomarkers and therapeutic targets in various cancers. By unraveling these regulatory mechanisms, this review offers valuable insights into innovative strategies for cancer diagnosis and treatment and emphasizes the translational significance of ncRNA-mediated MMP-13 regulation in oncology.
Collapse
Affiliation(s)
- Deekshaa Chidambaram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Velan Subashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Muthuvairaprasath Nanthanalaxmi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
2
|
Zhang Y, Zhuang H, Chen K, Zhao Y, Wang D, Ran T, Zou D. Intestinal fibrosis associated with inflammatory bowel disease: Known and unknown. Chin Med J (Engl) 2025; 138:883-893. [PMID: 40012095 PMCID: PMC12037091 DOI: 10.1097/cm9.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Intestinal fibrosis is a major complication of inflammatory bowel disease (IBD), leading to a high incidence of surgical interventions and significant disability. Despite its clinical relevance, no targeted pharmacological therapies are currently available. This review aims to explore the underlying mechanisms driving intestinal fibrosis and address unresolved scientific questions, offering insights into potential future therapeutic strategies. We conducted a literature review using data from PubMed up to October 2024, focusing on studies related to IBD and fibrosis. Intestinal fibrosis results from a complex network involving stromal cells, immune cells, epithelial cells, and the gut microbiota. Chronic inflammation, driven by factors such as dysbiosis, epithelial injury, and immune activation, leads to the production of cytokines like interleukin (IL)-1β, IL-17, and transforming growth factor (TGF)-β. These mediators activate various stromal cell populations, including fibroblasts, pericytes, and smooth muscle cells. The activated stromal cells secrete excessive extracellular matrix components, thereby promoting fibrosis. Additionally, stromal cells influence the immune microenvironment through cytokine production. Future research would focus on elucidating the temporal and spatial relationships between immune cell-driven inflammation and stromal cell-mediated fibrosis. Additionally, investigations are needed to clarify the differentiation origins of excessive extracellular matrix-producing cells, particularly fibroblast activation protein (FAP) + fibroblasts, in the context of intestinal fibrosis. In conclusion, aberrant stromal cell activation, triggered by upstream immune signals, is a key mechanism underlying intestinal fibrosis. Further investigations into immune-stromal cell interactions and stromal cell activation are essential for the development of therapeutic strategies to prevent, alleviate, and potentially reverse fibrosis.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danshu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Steffan B, Grossmann T, Gerstenberger C, Gugatschka M, Hortobagyi D, Kirsch A, Grill M. Functional Characteristics of the Crosstalk Between Vocal Fold Fibroblasts and Macrophages-The Role of Vibration in Vocal Fold Inflammation. J Voice 2025:S0892-1997(24)00478-8. [PMID: 39799073 DOI: 10.1016/j.jvoice.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVES This in vitro study investigated the interaction between human vocal fold fibroblasts (hVFF) and macrophages under the influence of cigarette smoke extract (CSE) and vibration as potential regulators of vocal fold (VF) inflammation. STUDY DESIGN Experimental in vitro pilot study. METHODS Immortalized hVFF were cultured in flexible-bottomed cell culture plates, treated with CSE, and subjected to static or dynamic conditions in a phonomimetic bioreactor. For coculture, unstimulated or lipopolysaccharide/IFNγ-stimulated THP-1 (human leukemia monocytic cell line) macrophages were added in inserts for a final 24 hours of vibration period. We measured messenger ribonucleic acid (mRNA) (quantitative polymerase chain reaction [qPCR]) and protein levels (Western Blot, ELISA, and LUMINEX®) of hVFF and analyzed the results using two- and three-way ANOVA with post hoc tests. RESULTS Under inflammatory stimulation, we observed a reduction of collagen (COL) type 1A1, 1A2, and 3A1, and increased gene expression of COL4A1, matrix metallopeptidase 2, and vascular endothelial growth factor A in hVFF. Additionally, the pro-inflammatory markers cyclooxygenase (COX) 1 and 2, interleukin (IL) 1β, IL-6, and IL-8 were upregulated. CSE increased COX1 and COX2 levels, whereas vibration reduced CSE-induced increases of COL4A1 and COX2 in pro-inflammatory stimulated hVFF. CONCLUSION This study indicates that vibration may mitigate CSE-induced inflammatory damage in the hVFF, thereby offering new insights into the cellular crosstalk that underlies the pathophysiology of VF inflammation in smoking-related voice disorders.
Collapse
Affiliation(s)
- Barbara Steffan
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - Tanja Grossmann
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria.
| | - Claus Gerstenberger
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - Markus Gugatschka
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - David Hortobagyi
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria
| | - Andrijana Kirsch
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Magdalena Grill
- Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Chauhan G, Massey WJ, Veisman I, Rieder F. Anti-fibrotics in inflammatory bowel diseases: Challenges and successes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:85-106. [PMID: 39521606 DOI: 10.1016/bs.apha.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stricture formation leading to obstruction in Crohn's disease (CD) remains one of the largest unmet needs in the field of inflammatory bowel diseases (IBD). Despite this need no selective anti-stricture drug has been approved for use in CD patients. This contrasts with other fibrotic diseases, such as in the lung, liver or kidney, where multiple drug development programs crossed the starting line and two anti-fibrotics are now being approved for pulmonary fibrosis. Strictures are composed of a mix of inflammation, excessive deposition of extracellular matrix (ECM) and smooth muscle hyperplasia, likely all ultimately being responsible for the luminal narrowing driving patient symptoms. Our understanding of the pathogenesis of stricturing CD has evolved and indicates a multifactorial process involving immune and non-immune cells and their soluble mediators. This understanding has rendered target pathways for anti-stricture drug development. Significant progress was made in creating consensus definitions and tools to enable clinical trials with two clinical development programs having been conceived to date. In this chapter, we discuss stricture pathogenesis with a focus on the pathways being tested in clinical trials, and clinical trial endpoints developed for this indication.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
5
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Liu Z, Huang Z, Wang Y, Xiong S, Lin S, He J, Tan J, Liu C, Wu X, Nie J, Huang W, Zhang Y, Zhou L, Mao R. Intestinal strictures in Crohn's disease: An update from 2023. United European Gastroenterol J 2024; 12:802-813. [PMID: 38546434 PMCID: PMC11250166 DOI: 10.1002/ueg2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 07/17/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that leads to intestinal stricture in nearly 35% of cases within 10 years of initial diagnosis. The unknown pathogenesis, lack of universally accepted criteria, and absence of an effective management approach remain unconquered challenges in structuring CD. The pathogenesis of stricturing CD involves intricate interactions between factors such as immune cell dysbiosis, fibroblast activation, and microecology imbalance. New techniques such as single-cell sequencing provide a fresh perspective. Non-invasive diagnostic tools such as serum biomarkers and novel cross-sectional imaging techniques offer a precise understanding of intestinal fibrostenosis. Here, we provide a timely and comprehensive review of the worthy advancements in intestinal strictures in 2023, aiming to dispense cutting-edge information regarding fibrosis and to build a cornerstone for researchers and clinicians to make greater progress in the field of intestinal strictures.
Collapse
Affiliation(s)
- Zishan Liu
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhuoyan Huang
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yu Wang
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shanshan Xiong
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Sinan Lin
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jinshen He
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jinyu Tan
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Caiguang Liu
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaomin Wu
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jing Nie
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Weidong Huang
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yao Zhang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Longyuan Zhou
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ren Mao
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Wang J, Yang B, Chandra J, Ivanov A, Brown JM, Florian R. Preventing fibrosis in IBD: update on immune pathways and clinical strategies. Expert Rev Clin Immunol 2024; 20:727-734. [PMID: 38475672 PMCID: PMC11180587 DOI: 10.1080/1744666x.2024.2330604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Intestinal fibrosis is a common and serious complication of inflammatory bowel diseases (IBD) driving stricture formation in Crohn's disease patients and leading to submucosal damage in ulcerative colitis. Recent studies provided novel insights into the role of immune and nonimmune components in the pathogenesis of intestinal fibrosis. Those new findings may accelerate the development of anti-fibrotic treatment in IBD patients. AREAS COVERED This review is designed to cover the recent progress in mechanistic research and therapeutic developments on intestinal fibrosis in IBD patients, including new cell clusters, cytokines, proteins, microbiota, creeping fat, and anti-fibrotic therapies. EXPERT OPINION Due to the previously existing major obstacle of missing consensus on stricture definitions and the absence of clinical trial endpoints, testing of drugs with an anti-fibrotic mechanism is just starting in stricturing Crohn's disease (CD). A biomarker to stratify CD patients at diagnosis without any complications into at-risk populations for future strictures would be highly desirable. Further investigations are needed to identify novel mechanisms of fibrogenesis in the intestine that are targetable and ideally gut specific.
Collapse
Affiliation(s)
- Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Bo Yang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Andrei Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rieder Florian
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Liu Y, Zhang T, Pan K, Wei H. Mechanisms and therapeutic research progress in intestinal fibrosis. Front Med (Lausanne) 2024; 11:1368977. [PMID: 38947241 PMCID: PMC11211380 DOI: 10.3389/fmed.2024.1368977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Intestinal fibrosis is a common complication of chronic intestinal diseases with the characteristics of fibroblast proliferation and extracellular matrix deposition after chronic inflammation, leading to lumen narrowing, structural and functional damage to the intestines, and life inconvenience for the patients. However, anti-inflammatory drugs are currently generally not effective in overcoming intestinal fibrosis making surgery the main treatment method. The development of intestinal fibrosis is a slow process and its onset may be the result of the combined action of inflammatory cells, local cytokines, and intestinal stromal cells. The aim of this study is to elucidate the pathogenesis [e.g., extracellular matrix (ECM), cytokines and chemokines, epithelial-mesenchymal transition (EMT), differentiation of fibroblast to myofibroblast and intestinal microbiota] underlying the development of intestinal fibrosis and to explore therapeutic advances (such as regulating ECM, cytokines, chemokines, EMT, differentiation of fibroblast to myofibroblast and targeting TGF-β) based on the pathogenesis in order to gain new insights into the prevention and treatment of intestinal fibrosis.
Collapse
Affiliation(s)
- Yanjiang Liu
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
9
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
10
|
Tongmuang N, Cai KQ, An J, Novy M, Jensen LE. Floxed Il1rl2 Locus with mCherry Reporter Element Reveals Distinct Expression Patterns of the IL-36 Receptor in Barrier Tissues. Cells 2024; 13:787. [PMID: 38727323 PMCID: PMC11083296 DOI: 10.3390/cells13090787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
IL-36 cytokines are emerging as beneficial in immunity against pathogens and cancers but can also be detrimental when dysregulated in autoimmune and autoinflammatory conditions. Interest in targeting IL-36 activity for therapeutic purposes is rapidly growing, yet many unknowns about the functions of these cytokines remain. Thus, the availability of robust research tools is essential for both fundamental basic science and pre-clinical studies to fully access outcomes of any manipulation of the system. For this purpose, a floxed Il1rl2, the gene encoding the IL-36 receptor, mouse strain was developed to facilitate the generation of conditional knockout mice. The targeted locus was engineered to contain an inverted mCherry reporter sequence that upon Cre-mediated recombination will be flipped and expressed under the control of the endogenous Il1rl2 promoter. This feature can be used to confirm knockout in individual cells but also as a reporter to determine which cells express the IL-36 receptor IL-1RL2. The locus was confirmed to function as intended and further used to demonstrate the expression of IL-1RL2 in barrier tissues. Il1rl2 expression was detected in leukocytes in all barrier tissues. Interestingly, strong expression was observed in epithelial cells at locations in direct contact with the environment such as the skin, oral mucosa, the esophagus, and the upper airways, but almost absent from epithelial cells at more inward facing sites, including lung alveoli, the small intestine, and the colon. These findings suggest specialized functions of IL-1RL2 in outward facing epithelial tissues and cells. The generated mouse model should prove valuable in defining such functions and may also facilitate basic and translational research.
Collapse
Affiliation(s)
- Nopprarat Tongmuang
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Jiahui An
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Mariah Novy
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Liselotte E. Jensen
- Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| |
Collapse
|