1
|
Chen W, Zhou W, Liu S. The key role of natural products in the fight against endometrial Cancer. Int Immunopharmacol 2025; 151:114344. [PMID: 40015208 DOI: 10.1016/j.intimp.2025.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Endometrial cancer (EC) is a common malignant disease in women, originating from the endometrial tissue. Over the past few decades, the global incidence rate of EC has gradually increased, and the affected population has become progressively younger. Traditional treatment methods, such as surgery and adjuvant therapy, have considerable toxic side effects. Furthermore, their therapeutic effectiveness is significantly very uncertain. Therefore, the search for a new type of treatment for EC is a top priority. Natural products are a class of compounds found in nature that have a wide range of biological functions; their derivatives have chemical structures that show great potential for developing new drugs. The latest studies have found that certain natural products, such as flavonoids, plant polyphenols, terpenoids and alkaloids, have inhibitory effects on EC cells in non-clinical models and animal studies. Despite challenges, including low extraction and bioavail ability, the potential of natural products for treating EC is still highly regarded by the scientific community. In the future, as research on natural products deepens and is combined with modern drug design and delivery technologies, it is hoped that more efficient and less toxic anti-cancer drugs will be developed, thereby offering EC patients more treatment options and hope. This article summarises the possible molecular mechanisms of various natural products and their bioactive components with regard to EC cells, as well as the latest research, to provide new ideas for further research and drug development.
Collapse
Affiliation(s)
- Wen Chen
- Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University (College of Integrated Traditional Chinese and Western Medicine Clinical Medicine), Hangzhou 310053, China
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Songjun Liu
- Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University (College of Integrated Traditional Chinese and Western Medicine Clinical Medicine), Hangzhou 310053, China; Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
2
|
de Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, Barbalho SM. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025; 15:124. [PMID: 39997749 PMCID: PMC11857241 DOI: 10.3390/metabo15020124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Neurodegenerative diseases comprise a group of chronic, usually age-related, disorders characterized by progressive neuronal loss, deformation of neuronal structure, or loss of neuronal function, leading to a substantially reduced quality of life. They remain a significant focus of scientific and clinical interest due to their increasing medical and social importance. Most neurodegenerative diseases present intracellular protein aggregation or their extracellular deposition (plaques), such as α-synuclein in Parkinson's disease and amyloid beta (Aβ)/tau aggregates in Alzheimer's. Conventional treatments for neurodegenerative conditions incur high costs and are related to the development of several adverse effects. In addition, many patients are irresponsive to them. For these reasons, there is a growing tendency to find new therapeutic approaches to help patients. This review intends to investigate some phytocompounds' effects on neurodegenerative diseases. These conditions are generally related to increased oxidative stress and inflammation, so phytocompounds can help prevent or treat neurodegenerative diseases. To achieve our aim to provide a critical assessment of the current literature about phytochemicals targeting neurodegeneration, we reviewed reputable databases, including PubMed, EMBASE, and COCHRANE, seeking clinical trials that utilized phytochemicals against neurodegenerative conditions. A few clinical trials investigated the effects of phytocompounds in humans, and after screening, 13 clinical trials were ultimately included following PRISMA guidelines. These compounds include polyphenols (flavonoids such as luteolin and quercetin, phenolic acids such as rosmarinic acid, ferulic acid, and caffeic acid, and other polyphenols like resveratrol), alkaloids (such as berberine, huperzine A, and caffeine), and terpenoids (such as ginkgolides and limonene). The gathered evidence underscores that quercetin, caffeine, ginkgolides, and other phytochemicals are primarily anti-inflammatory, antioxidant, and neuroprotective, counteracting neuroinflammation, neuronal oxidation, and synaptic dysfunctions, which are crucial aspects of neurodegenerative disease intervention in various included conditions, such as Alzheimer's and other dementias, depression, and neuropsychiatric disorders. In summary, they show that the use of these compounds is related to significant improvements in cognition, memory, disinhibition, irritability/lability, aberrant behavior, hallucinations, and mood disorders.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana Maria Ragassi Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
3
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
4
|
Ren N, Zhang H, Li T, Ji H, Zhang Z, Wu H. ATP5J regulates microglial activation via mitochondrial dysfunction, exacerbating neuroinflammation in intracerebral hemorrhage. Front Immunol 2024; 15:1509370. [PMID: 39735538 PMCID: PMC11671693 DOI: 10.3389/fimmu.2024.1509370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation. However, the role of ATP5J in microglial activation and neuroinflammation post-ICH is poorly understood. This study aimed to investigate the effects of ATP5J on microglial activation and subsequent neuroinflammation in ICH and to elucidate the underlying mechanisms. We observed that ATP5J was upregulated in microglia after ICH. AAV9-mediated ATP5J overexpression worsened neurobehavioral deficits, disrupted the blood-brain barrier, and increased brain water content in ICH mice. Conversely, ATP5J knockdown ameliorated these effects. ATP5J overexpression also intensified microglial activation, neuronal apoptosis, and inflammatory responses in surrounding tissues post-ICH. ATP5J impaired microglial dynamics and reduced the proliferation and migration of microglia to injury sites. We used oxyhemoglobin (OxyHb) to stimulate BV2 cells and model ICH in vitro. Further in vitro studies showed that ATP5J overexpression enhanced OxyHb-induced microglial functional transformation. Mechanistically, ATP5J silencing reversed dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1) upregulation in microglia post-OxyHb induction; reduced mitochondrial overdivision, excessive mitochondrial permeability transition pore opening, and reactive oxygen species production; restored normal mitochondrial ridge morphology; and partially restored mitochondrial respiratory electron transport chain activity. ATP5J silencing further alleviated OxyHb-induced mitochondrial dysfunction by regulating mitochondrial metabolism. Our results indicate that ATP5J is a key factor in regulating microglial functional transformation post-ICH by modulating mitochondrial dysfunction and metabolism, thereby positively regulate neuroinflammation. By inhibiting ATP5J, SBI following ICH could be prevented. Therefore, ATP5J could be a candidate for molecular and therapeutic target exploration to alleviate neuroinflammation post-ICH.
Collapse
Affiliation(s)
| | | | | | | | - Zhen Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Cheng H, Men Y, An Y, Yu J, Zhang G, Li J, Wang X, Sun G, Wu Y. Overexpression of endothelial S1pr2 promotes blood-brain barrier disruption via JNK/c-Jun/MMP-9 pathway after traumatic brain injury in both in vivo and in vitro models. Front Pharmacol 2024; 15:1448570. [PMID: 39679379 PMCID: PMC11637860 DOI: 10.3389/fphar.2024.1448570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
Objectives The disruption of blood-brain barrier (BBB) is associated with poor outcomes of TBI patients. Sphingosine-1-phosphate receptor 2 (S1pr2), a member of the G protein-coupled receptor family, is involved in endothelial activation and the regulation of vascular integrity. We hypothesized that the inhibition of S1pr2 may alleviate BBB disruption and explored potential underlying molecular mechanisms. Methods Lesion volumes were assessed utilizing Nissl staining; neurological outcomes were evaluated through a battery of neurobehavioral assessments; phenotype-associated proteins were scrutinized via Western blot analysis; levels of reactive oxygen species (ROS), neuronal apoptosis, and S1pr2 expression were determined using immunofluorescence staining. The impact of S1pr2 inhibition after TBI and its underlying mechanism were elucidated using the selective S1pr2 inhibitor JTE-013, the JNK phosphorylation inhibitor SP600125, and cellular models. Chip-qPCR was employed to further elucidate the binding sites of the transcription factor c-Jun. Results The expression of S1pr2 significantly increased following TBI in mice. Pharmacological inhibition of S1pr2 alleviated secondary injury with reduced lesion volume, ROS generation, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was also mitigated, accompanied by reduced degradation of tight junction proteins and decreased induction of matrix metalloproteinases-9 (MMP-9) post-TBI. Mechanistically, TBI induces an increase in S1pr2 specifically in endothelial cells, leading to the promotion of MMP-9 transactivation by enhancing JNK/c-Jun signaling. This results in the degradation of tight junction proteins and increased BBB permeability. Through in vitro and in vivo Chip-qPCR experiments, we verified that AP-1a and AP-1b of MMP-9 promoter function as binding sites for phosphorylated c-Jun. Conclusion Our findings identify a previously undisclosed role of S1pr2 in the pathophysiology of TBI. The S1pr2 inhibition presents a novel approach to alleviate BBB disruption after TBI through regulating the JNK/c-Jun/MMP-9 pathway.
Collapse
Affiliation(s)
- Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijiao Men
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqing An
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaming Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Wu X, Liu H, Hu Q, Wang J, Zhang S, Cui W, Shi Y, Bai H, Zhou J, Han L, Li L, Wu Y, Luo J, Wang T, Guo C, Wang Q, Ge S, Qu Y. Astrocyte-Derived Extracellular Vesicular miR-143-3p Dampens Autophagic Degradation of Endothelial Adhesion Molecules and Promotes Neutrophil Transendothelial Migration after Acute Brain Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305339. [PMID: 38044319 PMCID: PMC10837358 DOI: 10.1002/advs.202305339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR-143-3p (EVs-miR-143-3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs-miR-143-3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR-143-3p in BMECs induce the up-regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism-wise, miR-143-3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM-1-targeting EVs system to selectively deliver miR-143-3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs-miR-143-3p in BMECs' dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Xun Wu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Haixiao Liu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Qing Hu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Jin Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Shenghao Zhang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Wenxing Cui
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yingwu Shi
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Hao Bai
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Jinpeng Zhou
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Liying Han
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Leiyang Li
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebei050000China
| | - Jianing Luo
- Department of NeurosurgeryWest Theater General HospitalChengduSichuan610083China
| | - Tinghao Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Chengxuan Guo
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Qiang Wang
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Shunnan Ge
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| | - Yan Qu
- Department of NeurosurgeryTangdu Hospitalthe Fourth Military Medical UniversityXi'anShaanxi710038China
| |
Collapse
|
7
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|