1
|
Matsumoto M, Yoshida M, Oya T, Tsuneyama K, Matsumoto M, Yoshida H. Role of PRC2 in the stochastic expression of Aire target genes and development of mimetic cells in the thymus. J Exp Med 2025; 222:e20240817. [PMID: 40244172 PMCID: PMC12005117 DOI: 10.1084/jem.20240817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
The transcriptional targets of Aire and the mechanisms controlling their expression in medullary thymic epithelial cells (mTECs) need to be clarified to understand Aire's tolerogenic function. By using a multi-omics single-cell approach coupled with deep scRNA-seq, we examined how Aire controls the transcription of a wide variety of genes in a small fraction of Aire-expressing cells. We found that chromatin repression by PRC2 is an important step for Aire to achieve stochastic gene expression. Aire unleashed the silenced chromatin configuration caused by PRC2, thereby increasing the expression of its functional targets. Besides this preconditioning for Aire's gene induction, we demonstrated that PRC2 also controls the composition of mTECs that mimic the developmental trait of peripheral tissues, i.e., mimetic cells. Of note, this action of PRC2 was independent of Aire and it was more apparent than Aire. Thus, our study uncovered the essential role of polycomb complex for Aire-mediated promiscuous gene expression and the development of mimetic cells.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
2
|
Matsumoto M, Sobral F, Cardoso JS, Oya T, Tsuneyama K, Matsumoto M, Alves NL. The Ins and Outs of Thymic Epithelial Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:51-79. [PMID: 40067584 DOI: 10.1007/978-3-031-77921-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus is an essential component of the immune system responsible for producing T cells. It is anatomically divided into two main regions: the outer cortex and the inner medulla. This chapter summarizes our current understanding of thymic stromal cell functions, with a particular focus on the interactions between these cells and T cells. This exploration aims to shed light on the pathogenesis of immune disorders, including autoimmunity.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Francisco Sobral
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - João S Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan.
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
3
|
Sellau J, Hansen CS, Gálvez RI, Linnemann L, Honecker B, Lotter H. Immunological clues to sex differences in parasitic diseases. Trends Parasitol 2024; 40:1029-1041. [PMID: 39379261 DOI: 10.1016/j.pt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The effect of sex on the prevalence and severity of parasitic diseases is an emerging area of research. Several factors underlie sex-based differences, including sociocultural influences that affect exposure to parasites, and physiological disparities linked to biological sex. Hence, human studies must be interpreted cautiously; however, studies conducted under controlled laboratory conditions are important to validate findings in humans. Such research can more effectively elucidate the role of sex-determining physiological factors (particularly their impact on immune responses), as well as the role of sex-specific differences in resistance to, or severity of, parasitic diseases. This review focuses on the overarching impact of biological sex variables on immunity. Both human and rodent experimental data are discussed, with a focus on selected protozoan and helminth infections.
Collapse
Affiliation(s)
- Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Lara Linnemann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
4
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Monteiro CJ, Duarte MJ, Machado MCV, Mascarenhas RS, Palma PVB, García HDM, Nakaya HI, Cunha TM, Donadi EA, Passos GA. The single-cell transcriptome of mTECs and CD4 + thymocytes under adhesion revealed heterogeneity of mTECs and a network controlled by Aire and lncRNAs. Front Immunol 2024; 15:1376655. [PMID: 39328409 PMCID: PMC11425717 DOI: 10.3389/fimmu.2024.1376655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
To further understand the impact of deficiency of the autoimmune regulator (Aire) gene during the adhesion of medullary thymic epithelial cells (mTECs) to thymocytes, we sequenced single-cell libraries (scRNA-seq) obtained from Aire wild-type (WT) (Airewt/wt ) or Aire-deficient (Airewt/mut ) mTECs cocultured with WT single-positive (SP) CD4+ thymocytes. Although the libraries differed in their mRNA and long noncoding RNA (lncRNA) profiles, indicating that mTECs were heterogeneous in terms of their transcriptome, UMAP clustering revealed that both mTEC lines expressed their specific markers, i.e., Epcam, Itgb4, Itga6, and Casp3 in resting mTECs and Ccna2, Pbk, and Birc5 in proliferative mTECs. Both cocultured SP CD4+ thymocytes remained in a homogeneous cluster expressing the Il7r and Ccr7 markers. Comparisons of the two types of cocultures revealed the differential expression of mRNAs that encode transcription factors (Zfpm2, Satb1, and Lef1), cell adhesion genes (Itgb1) in mTECs, and Themis in thymocytes, which is associated with the regulation of positive and negative selection. At the single-cell sequencing resolution, we observed that Aire acts on both Aire WT and Aire-deficient mTECs as an upstream controller of mRNAs, which encode transcription factors or adhesion proteins that, in turn, are posttranscriptionally controlled by lncRNAs, for example, Neat1, Malat1, Pvt1, and Dancr among others. Under Aire deficiency, mTECs dysregulate the expression of MHC-II, CD80, and CD326 (EPCAM) protein markers as well as metabolism and cell cycle-related mRNAs, which delay the cell cycle progression. Moreover, when adhered to mTECs, WT SP CD4+ or CD8+ thymocytes modulate the expression of cell activation proteins, including CD28 and CD152/CTLA4, and the expression of cellular metabolism mRNAs. These findings indicate a complex mechanism through which an imbalance in Aire expression can affect mTECs and thymocytes during adhesion.
Collapse
Affiliation(s)
- Cíntia J. Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Max J. Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mayara Cristina V. Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Romário S. Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Patrícia V. Bonini Palma
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Helder I. Nakaya
- Research Institute, Albert Einstein Israeli Hospital, São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A. Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A. Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Center for Cell-Based Therapy in Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
7
|
Matsumoto M, Matsumoto M. Learning the Autoimmune Pathogenesis Through the Study of Aire. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:19-32. [PMID: 38467970 DOI: 10.1007/978-981-99-9781-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
One of the difficulties in studying the pathogenesis of autoimmune diseases is that the disease is multifactorial involving sex, age, MHC, environment, and some genetic factors. Because deficiency of Aire, a transcriptional regulator, is an autoimmune disease caused by a single gene abnormality, Aire is an ideal research target for approaching the enigma of autoimmunity, e.g., the mechanisms underlying Aire deficiency can be studied using genetically modified animals. Nevertheless, the exact mechanisms of the breakdown of self-tolerance due to Aire's dysfunction have not yet been fully clarified. This is due, at least in part, to the lack of information on the exact target genes controlled by Aire. State-of-the-art research infrastructures such as single-cell analysis are now in place to elucidate the essential function of Aire. The knowledge gained through the study of Aire-mediated tolerance should help our understanding of the pathogenesis of autoimmune disease in general.
Collapse
Affiliation(s)
| | - Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
8
|
Cho E, Han S, Eom HS, Lee SJ, Han C, Singh R, Kim SH, Park BM, Kim BG, Kim YH, Kwon BS, Nam KT, Choi BK. Cross-Activation of Regulatory T Cells by Self Antigens Limits Self-Reactive and Activated CD8 + T Cell Responses. Int J Mol Sci 2023; 24:13672. [PMID: 37761976 PMCID: PMC10530955 DOI: 10.3390/ijms241813672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between regulatory T (Treg) cells and self-reactive T cells is a crucial mechanism for maintaining immune tolerance. In this study, we investigated the cross-activation of Treg cells by self-antigens and its impact on self-reactive CD8+ T cell responses, with a focus on the P53 signaling pathway. We discovered that major histocompatibility complex (MHC) I-restricted self-peptides not only activated CD8+ T cells but also induced the delayed proliferation of Treg cells. Following HLA-A*0201-restricted Melan-A-specific (pMelan) CD8+ T cells, we observed the direct expansion of Treg cells and concurrent suppression of pMelan+CD8+ T cell proliferation upon stimulation with Melan-A peptide. Transcriptome analysis revealed no significant alterations in specific signaling pathways in pMelan+CD8+ T cells that were co-cultured with activated Treg cells. However, there was a noticeable upregulation of genes involved in P53 accumulation, a critical regulator of cell survival and apoptosis. Consistent with such observation, the blockade of P53 induced a continuous proliferation of pMelan+CD8+ T cells. The concurrent stimulation of Treg cells through self-reactive TCRs by self-antigens provides insights into the immune system's ability to control activated self-reactive CD8+ T cells as part of peripheral tolerance, highlighting the intricate interplay between Treg cells and CD8+ T cells and implicating therapeutic interventions in autoimmune diseases and cancer immunotherapy.
Collapse
Affiliation(s)
- Eunjung Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Seongeun Han
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Hyeon Seok Eom
- Hematological Malignancy Center of the Hospital, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sang-Jin Lee
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Chungyong Han
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Rohit Singh
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Seon-Hee Kim
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Bo-Mi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young H. Kim
- Eutilex, Co., Ltd., Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Byoung S. Kwon
- Eutilex, Co., Ltd., Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Beom K. Choi
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
- Innobationbio, Co., Ltd., Mapo-gu, Seoul 03929, Republic of Korea
| |
Collapse
|