1
|
Cheng Z, Yang X, Ren Y, Wang H, Zhang Q, Lin S, Wu W, Yang X, Zheng J, Liu X, Tao X, Chen X, Qian Y, Li X. Investigating the molecular mechanisms and clinical potential of APO+ endothelial cells associated with PANoptosis in the tumor microenvironment of hepatocellular carcinoma using single-cell sequencing data. Transl Oncol 2025; 57:102402. [PMID: 40318262 DOI: 10.1016/j.tranon.2025.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION PANoptosis is a newly identified form of programmed cell death that integrates elements of pyroptosis, apoptosis, and necroptosis. It plays a pivotal role in shaping the tumor immune microenvironment. Despite its significance, the specific functions and mechanisms of PANoptosis within the tumor microenvironment (TME) of hepatocellular carcinoma (HCC) remain unclear. This study aims to investigate these mechanisms using single-cell RNA sequencing data. METHODS Single-cell RNA sequencing data from HCC patients were obtained from the GEO database. The AUCell algorithm was used to quantify PANoptosis activity across various cell types in the TME. Cell populations with high PANoptosis scores were further analyzed using CytoTRACE and scMetabolism to assess their differentiation states and metabolic profiles. Associations between these high-score cell subsets and patient prognosis, tumor stage, and response to immunotherapy were examined. Cell-cell communication analysis was performed to explore how PANoptosis-related APO+ endothelial cells (ECs) may influence HCC progression. Immunofluorescence staining was used to assess the spatial distribution of APO+ ECs in tumor and adjacent tissues. Finally, a CCK8 assay was conducted to evaluate the effect of APOH+ HUVECs on HCC cell proliferation. RESULTS A total of 16 HCC patient samples with single-cell RNA sequencing data were included in the study. By calculating the PANoptosis scores of different cell types, we found that ECs, macrophages, hepatocytes, and fibroblasts exhibited higher PANoptosis scores. The PANoptosis scores, differentiation trajectories, intercellular communication, and metabolic characteristics of these four cell subpopulations with high PANoptosis scores were visualized. Among all subpopulations, APO+ ECs demonstrated the most significant clinical relevance, showing a positive correlation with better clinical staging, prognosis, and response to immunotherapy in HCC patients. Cellular communication analysis further revealed that APO+ ECs might regulate the expression of HLA molecules, thereby influencing T cell proliferation and differentiation, potentially contributing to improved prognosis in HCC patients. Immunofluorescence staining results indicated that APO+ ECs were primarily located in the adjacent tissues of HCC patients, with lower expression in tumor tissues. The results of cellular experiments showed that APOH+ HUVECs significantly inhibited the proliferation of HCC cells. CONCLUSIONS This study systematically mapped the cellular landscape of the TME in HCC patients and explored the differences in differentiation trajectories, metabolic pathways, and other aspects of subpopulations with high PANoptosis scores. Additionally, the study elucidated the potential molecular mechanisms through which APO+ ECs inhibit HCC cell proliferation and improve prognosis and immunotherapeutic efficacy in HCC patients. This research provides new insights for clinical prognosis evaluation and immunotherapy strategies in HCC.
Collapse
Affiliation(s)
- Zhaorui Cheng
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Xiangyu Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China.
| | - Yi Ren
- Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Huimin Wang
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Sailing Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenhao Wu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaolu Yang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jiahan Zheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinzhu Liu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xin Tao
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
| | - Xiaoyong Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| | - Yuxin Qian
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China; Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Chen Y, Wang M. Revealing roles of PANoptosis-related genes in prognosis and molecular subtypes in lung squamous cell carcinoma by integrated bioinformatic analyses and experiments. Clin Exp Med 2025; 25:154. [PMID: 40353888 PMCID: PMC12069423 DOI: 10.1007/s10238-025-01696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The purpose of current study was to reveal the role of PANoptosis-associated genes in lung squamous cell carcinoma (LUSC) and their potential as prognostic biomarkers. We analyzed RNA-seq data from TCGA-LUSC and GEO datasets to identify differentially expressed genes (DEGs) between LUSC and normal samples, followed by VENN analysis to reveal PANoptosis-related DEGs. Functional enrichment analyses were performed by clusterProfiler package. Distinct LUSC subtypes were identified by consensus clustering based on PANoptosis-related DEGs. Univariate Cox and LASSO regression were utilized to identify key prognostic genes, and a prognostic model was developed based on selected genes. Immune infiltration status was evaluated by CIBERSORT and ESTIMATE algorithms. Expression of key prognostic genes was tested in three LUSC cell lines by RT-qPCR and Western blot. Roles of TLR3 in LUSC progression were determined by functional experiments. A total of 76 PANoptosis-related DEGs were identified, with significant enrichment in apoptosis pathways. The clustering analysis revealed four subtypes, in which survival and immune microenvironment were dramatically different. From the 76 genes, four key prognostic genes (CHEK2, PDK4, TLR3, and IL1B) were identified to establish prognostic risk model, which could reflect the survival status and immune cells composition variations for LUSC patients. Besides, these four genes showed significant correlations with infiltrating levels of various immune cells. TLR3 was identified as a more weighted prognostic risk gene in LUSC. Functional assays demonstrated that genes like TLR3 modulated cell proliferation, migration, and inflammatory responses in LUSC cells. This study highlighted the potential of the four key PANoptosis genes as biomarkers or targets in LUSC, and the risk model based on these four genes provided novel insights to develop personalized treatment strategy for patients with LUSC.
Collapse
Affiliation(s)
- Ying Chen
- Department of Respiratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Xixi Hospital), No. 2 Hengbu Road, Hangzhou, 310023, Zhejiang, China
| | - Meihua Wang
- Department of Respiratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Xixi Hospital), No. 2 Hengbu Road, Hangzhou, 310023, Zhejiang, China.
| |
Collapse
|
3
|
Zhi Y, Qiaoyun T. Screening of pivotal oncogenes modulated by DNA methylation in hepatocellular carcinoma and identification of atractylenolide I as an anti-cancer drug. Hum Cell 2025; 38:97. [PMID: 40325252 DOI: 10.1007/s13577-025-01224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
This study was performed to identify crucial oncogenes modulated by DNA methylation in hepatocellular carcinoma (HCC) and look for new drugs for HCC treatment. The data of TCGA-LIHC cohort were obtained from UCSC database. Weighted gene co-expression network analysis and multiple machine learning algorithms were applied to screen the crucial prognosis-related genes in HCC. Then these genes were further screened by DNA methylation status. Ten-eleven translocation 1 (TET1) was overexpressed in HCC cell lines, and its biological functions and regulatory effects on the oncogenes were explored by qPCR, methylation-specific polymerase chain reaction, cell viability assay, Western blot, etc. Molecular docking was applied to evaluate the binding affinity between atractylenolide I (AT-I) and TET1, and the tumor-suppressive functions of AT-I were examined with both in vitro and in vivo models. In this work, 12 crucial genes related to HCC prognosis were obtained, among which six genes were with differential methylation status in HCC tissues, including AKR1B10, ALPK3, NQO1, NT5DC2, SFN, and SPP1. The expression levels of ALPK3 and NT5DC2 were positively regulated by TET1, the crucial mediator of demethylation. TET1 overexpression increased the viability and stemness of HCC cells. AT-I had good binding affinity with TET1, and repressed its activity. AT-I promoted the methylation of ALPK3 and NT5DC2 promoter regions, and reduced their expression, and repressed the growth of HCC cells. In summary, DNA methylation contributes to HCC progression, and AT-I represses the malignancy of HCC cells by inhibiting TET1-mediated abnormal DNA demethylation.
Collapse
Affiliation(s)
- Yang Zhi
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Digestive Disease, Affiliated Central People's Hospital of China Three Gorges University, China Three Gorges University, Yichang, China
- Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China
| | - Tong Qiaoyun
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
- Institute of Digestive Disease, Affiliated Central People's Hospital of China Three Gorges University, China Three Gorges University, Yichang, China.
- Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
4
|
Ma W, Wang Q, Guo L, Ju X. The molecular mechanisms, roles, and potential applications of PANoptosis in cancer treatment. Front Immunol 2025; 16:1550800. [PMID: 40364845 PMCID: PMC12069359 DOI: 10.3389/fimmu.2025.1550800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
PANoptosis, a newly identified form of programmed cell death regulated by the panoptosome complex, exhibits key characteristics of apoptosis, pyroptosis and necroptosis. It exerts a substantial influence on the initiation and progression of a spectrum of diseases, particularly in cancer, where its impact is increasingly being recognized. PANoptosis is closely related to tumorigenesis, carcinogenesis, metastasis, chemotherapy resistance, as well as the prediction of therapeutic responses and prognosis in cancer patients. In this review, we first review the discovery of PANoptosis and systematically analyze the composition of the panoptosome. Subsequently, we examine the role of PANoptosis in various types of cancer, encompassing its function within the tumor microenvironment, its role in tumor drug resistance, and its predictive role in cancer prognosis. Ultimately, we delve into strategies for targeting PANoptosis in cancer therapy, including targeting various molecules in the PANoptosis pathway, such as ZBP1, RIPK1, RIPK3, Caspases and other novel strategies like nanoinducers and viral vectors. This review aims to provide references and assistance for the research and application of PANoptosis in cancer treatment.
Collapse
Affiliation(s)
- Wenyuan Ma
- Department of Pathology, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang Clinical Medical College of Jiangsu University, Danyang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People’s Hospital of Jiangsu University, Zhenjiang, Zhenjiang, Jiangsu, China
| | - Xiaoli Ju
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
He Y, Lu J, Du Y, Zhao L, Gong L, Wu P, Shu Q, Peng H, Wang X. Investigation of PANoptosis pathway in age-related macular degeneration triggered by Aβ1-40. Sci Rep 2025; 15:13514. [PMID: 40251333 PMCID: PMC12008305 DOI: 10.1038/s41598-025-98174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Our study aimed to identify PANoptosis in Aβ1-40-induced AMD, both in vivo and in vitro, and to determine if AIM2-PANoptosome mediates this process. We used transcriptomics to explore the signaling pathways and target genes linked to PANoptosis within a mouse model of AMD triggered by Aβ1-40. Optical coherence tomography (OCT), hematoxylin and eosin (H&E) staining, and electroretinography (ERG) were employed to assess retinal damage in terms of morphology and function. Morphological changes in ARPE-19 cells were observed using optical microscopy and scanning electron microscopy. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of cytokines in cell supernatants, mouse orbital serum, and human plasma to evaluate the severity of inflammation. CO-immunoprecipitation(CoIP) and molecular docking were performed to assess the impact and expression of proteins associated with the AIM2-PANoptosome. Quantitative polymerase chain reaction (qPCR), Western blot (WB), immunofluorescence, and apoptosis detection kits were used to evaluate the expression levels of genes and proteins related to PANoptosis-like cell death. Our results showed that the Aβ1-40-induced AMD model had increased expression of apoptosis, necroptosis, and pyroptosis pathways, and AIM2-PANoptosome components. CoIP and docking confirmed increased AIM2, ZBP1, and PYRIN levels under Aβ1-40 treatment. WB and immunofluorescence showed upregulation of PANoptosis-related proteins. Inhibitors reduced Aβ-induced protein expression. ELISA showed increased inflammatory cytokines. Apoptosis assays and microscopy revealed Aβ1-40-induced ARPE-19 cell loss and morphological changes. In conclusion, the Aβ1-40-induced AMD model displayed PANoptosis-like cell death, offering insights into disease pathogenesis.
Collapse
Affiliation(s)
- Yuxia He
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Guiyang Aier Eye Hospital, Guiyang, Guizhou Province, China
| | - Jing Lu
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Du
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Long Zhao
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lili Gong
- Guiyang Aier Eye Hospital, Guiyang, Guizhou Province, China
| | - Ping Wu
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qinxin Shu
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Peng
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xing Wang
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Xiong W, Li J, Tian A, Mao X. Unravelling the Role of PANoptosis in Liver Diseases: Mechanisms and Therapeutic Implications. Liver Int 2025; 45:e70000. [PMID: 40116786 DOI: 10.1111/liv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/23/2025]
Abstract
PANoptosis is a multimodal form of cell death that involves inflammatory, apoptotic, and necroptotic pathways, playing a key role in the development of liver diseases. This article first outlines the definition and characteristics of PANoptosis, and then explores its mechanisms of action in different types of liver diseases, including acute liver injury, liver failure, metabolic dysfunction-associated fatty liver disease, and hepatocellular carcinoma. Furthermore, this article analyses the molecular regulatory network of PANoptosis and potential therapeutic targets. Finally, this article summarises the current research on PANoptosis in liver diseases and future research directions, and it reviews the role of the emerging cell death mechanism of PANoptosis in liver diseases.
Collapse
Affiliation(s)
- Wanyuan Xiong
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Liver Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Aiping Tian
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaorong Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Wu ST, Zhu L, Feng XL, Wang HY, Li F. Strategies for discovering novel hepatocellular carcinoma biomarkers. World J Hepatol 2025; 17:101201. [PMID: 40027561 PMCID: PMC11866143 DOI: 10.4254/wjh.v17.i2.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), remains a significant global health challenge due to its high mortality rate and late-stage diagnosis. The discovery of reliable biomarkers is crucial for improving early detection and patient outcomes. This review provides a comprehensive overview of current and emerging biomarkers for HCC, including alpha-fetoprotein, des-gamma-carboxy prothrombin, glypican-3, Golgi protein 73, osteopontin, and microRNAs. Despite advancements, the diagnostic limitations of existing biomarkers underscore the urgent need for novel markers that can detect HCC in its early stages. The review emphasizes the importance of integrating multi-omics approaches, combining genomics, proteomics, and metabolomics, to develop more robust biomarker panels. Such integrative methods have the potential to capture the complex molecular landscape of HCC, offering insights into disease mechanisms and identifying targets for personalized therapies. The significance of large-scale validation studies, collaboration between research institutions and clinical settings, and consideration of regulatory pathways for clinical implementation is also discussed. In conclusion, while substantial progress has been made in biomarker discovery, continued research and innovation are essential to address the remaining challenges. The successful translation of these discoveries into clinical practice will require rigorous validation, standardization of protocols, and cross-disciplinary collaboration. By advancing the development and application of novel biomarkers, we can improve the early detection and management of HCC, ultimately enhancing patient survival and quality of life.
Collapse
Affiliation(s)
- Shi-Tao Wu
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Li Zhu
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Xiao-Ling Feng
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Hao-Yu Wang
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Fang Li
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China.
| |
Collapse
|
8
|
Yang Z, Kao X, Zhang L, Huang N, Chen J, He M. Exploring the Anti-PANoptosis Mechanism of Dachaihu Decoction Against Sepsis-Induced Acute Lung Injury: Network Pharmacology, Bioinformatics, and Experimental Validation. Drug Des Devel Ther 2025; 19:349-368. [PMID: 39839500 PMCID: PMC11750123 DOI: 10.2147/dddt.s495225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025] Open
Abstract
Background Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown. Methods First, we identified the intersecting targets among DCHD, SALI, and PANoptosis using relevant databases and published literature. Then, protein-protein interaction (PPI) network, molecular docking, and functional enrichment analysis were conducted. In vivo, cecal ligation and puncture (CLP) was used to construct a sepsis mouse model, and the therapeutic effects of DCHD on SALI were evaluated using hematoxylin and eosin (H&E) staining, quantitative real-time PCR (qRT-PCR), and ELISA. Finally, qRT-PCR, immunofluorescence staining, and Western blotting were used to verify the effect of DCHD-containing serum (DCHD-DS) on LPS-induced RAW 264.7 macrophages in vitro. Results 82 intersecting targets were identified by mapping the targets of DCHD, SALI, and PANoptosis. Enrichment analysis showed that DCHD against SALI via anti-PANoptosis by modulating tumor necrosis factor (TNF), AGE-RAGE, phosphoinositide 3-kinase (PI3K)-AKT, and Toll-like receptor signaling pathways by targeting Casp3, cellular tumor antigen p53 (TP53), B-cell lymphoma 2 (Bcl2), toll-like receptor-4 (TLR4), STAT3, STAT1, RELA, NF-κB1, myeloid cell leukemia-1 (MCL1), JUN, IL-1β, HSP90AA1, Casp9, Casp8, and Bcl2l1. Molecular docking analysis revealed that the key components of DCHD have a high binding affinity to the core targets. In vivo, DCHD improved lung histopathological injury, reduced inflammatory factor expression, and alleviated oxidative stress injury in lung tissues. In vitro, DCHD-DS alleviated cell morphology changes, the release of pro-inflammatory factors, and p65 nucleus aggregation. Furthermore, we verified that DCHD-DS inhibited PANoptosis by downregulating the PI3K/AKT/NF-κB signalling pathway. Conclusion DCHD attenuates SALI by inhibiting PANoptosis via control of the PI3K/AKT/NF-κB pathway. Our study provides a solid foundation for investigating the mechanisms of DCHD and its clinical application in the treatment of SALI.
Collapse
Affiliation(s)
- Zhen Yang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, People’s Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Xingyu Kao
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, People’s Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Lin Zhang
- Department of Cardiovascular, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Na Huang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, People’s Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Song K, Wu Y, Tan S. Caspases in PANoptosis. Curr Res Transl Med 2025; 73:103502. [PMID: 39985853 DOI: 10.1016/j.retram.2025.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Recent studies prove that the three well-established cell death pathways-pyroptosis, apoptosis, and necroptosis-are not isolated but rather engage in extensive crosstalk. PANoptosis, a newly identified pathway of inflammatory regulated cell death (RCD), integrates characteristics of apoptosis, pyroptosis, and necroptosis. Caspases are a family of conserved cysteine proteases that play critical roles in pyroptosis, apoptosis, and necroptosis. Similarly, caspases also play a role in PANoptosis. In this paper, we review the molecular mechanisms of these three RCDs and the crosstalk between them. We also delineate the discovery of PANoptosis and its association with disease. Furthermore, we discuss the caspase function in PANoptosis, mainly focusing on caspase-6 and caspase-8 molecules. This review describes the key molecules, especially caspases, in the context of PANoptosis research, aiming to provide a foundation for targeted interventions in PANoptosis-associated diseases.
Collapse
Affiliation(s)
- Kaiyuan Song
- Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, PR China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, PR China
| | - Yongbin Wu
- Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, PR China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, PR China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, PR China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, PR China.
| |
Collapse
|
10
|
Wang L, Lin B, Wang F, Dai Z, Xie G, Zhang J. Exploring PANoptosis in head and neck cancer: A novel approach to cancer therapy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117678. [PMID: 39765120 DOI: 10.1016/j.ecoenv.2025.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
PANoptosis is a newly discovered complex programmed cell death (PCD) form. In the field of cancer research, PANoptosis is involved in multiple cell death pathways that affect tumor cell survival, proliferation, and response to treatment, serving as an innovative strategy for cancer therapy. Endocrine-disrupting chemicals (EDCs) impact the endocrine system, including cancer. However, research on their influence on head and neck carcinoma (HNSC) through PANoptosis genes remains limited. This study utilises transcriptomic and clinical data related to HNSC from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We developed a risk model based on PANoptosis-related genes through LASSO Cox regression analysis. Finally, we utilized a Sankey diagram to depict the relationships between EDCs and key genes, identifying DSCAM, IL-6, and SYCP2 as critical predictors of HNSC PANoptosis. These essential genes identified 214 EDCs potentially influencing HNSC, including 3 (Aroclor 1242, Pentachlorobenzene, and Propanil) previously unreported to HNSC. These findings elucidate novel relationships between PANoptosis-related genes mediated by EDCs and the pathogenesis of HNSC.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baisheng Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feixiang Wang
- Department of Thoracic Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zili Dai
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guofeng Xie
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jian Zhang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Tang P, Wang T, Song F, Zhang Y, Zhao Y, Yarmohammadi H, Donadon M, Chen Z. Integrating T-cell inflammation features for prognosis in hepatocellular carcinoma: a novel predictive model. J Gastrointest Oncol 2024; 15:2613-2629. [PMID: 39816015 PMCID: PMC11732361 DOI: 10.21037/jgo-2024-874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death globally and accounts for 75% to 90% of primary liver cancer cases. The high mortality rate of HCC, coupled with the absence of reliable prognostic biomarkers, makes its treatment and prognosis evaluation challenging. The features of the T cell-inflamed microenvironment include active interferon (IFN)-γ signaling and the presence of cytotoxic effector molecules, antigen presentation, and T-cell activating cytokines. Although these features are closely associated with anticancer immunity, their specific roles in HCC remain unclear. This study aimed to investigate the role and prognostic significance of T-cell inflammation (TCI) in HCC patients, providing new insights for clinical diagnosis and treatment strategies. Methods We integrated single-sample gene set enrichment analysis (ssGSEA) and weighted gene coexpression network analysis (WGCNA) to identify the genes associated with TCI at both the single-cell and bulk-transcriptome levels. The HCC TCI-related score (HTCIRS) was developed and assessed with 10 different machine learning algorithms and their combinations, which was followed by validation of the key gene KLF2 in clinical samples and tissue microarrays (TMAs). Results We identified 65 genes associated with TCI, of which 36 were significantly correlated with overall survival (OS). The HTCIRS demonstrated excellent performance in prognostic prediction, revealing differences in biological functions and immune cell infiltration between different risk groups within the tumor microenvironment (TME). Furthermore, KLF2 was identified to be linked to the prognosis of patients with HCC. Conclusions The TCI-related score proposed in this study serves as an important tool for prognostic prediction and personalized treatment of patients with HCC, with KLF2 emerging as a potential biomarker for predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Pengju Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tianlun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yiming Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
12
|
Cui Z, Li Y, Bi Y, Li W, Piao J, Ren X. PANoptosis: A new era for anti-cancer strategies. Life Sci 2024; 359:123241. [PMID: 39549938 DOI: 10.1016/j.lfs.2024.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Cancer cells possess an extraordinary ability to dodge cell death through various pathways, granting them a form of immortality-a key obstacle in oncotherapy. Thus, it's vital to unravel the intricate mechanisms behind newly discovered types of cell death that drive tumor suppression, going beyond apoptosis alone. The emergence of PANoptosis, a form of cell death intertwining necroptosis, pyroptosis, and apoptosis, offers a fresh perspective, integrating these pathways into one cohesive process. When cells detect damage signals, they assemble PANoptosome complexes that disrupt their balance, trigger immune responses, and lead to their eventual collapse. PANoptosis has been associated with multiple cellular pathways, including ferroptosis. Mitochondrial dysfunction also plays a critical role in sparking and advancing PANoptosis. In this review, we map out the molecular machinery and regulatory web controlling PANoptosis. We explore cutting-edge research and future trends in PANoptosis-centered tumor therapies, spotlighting promising innovations that could amplify cancer treatment effectiveness through harnessing this multifaceted cell death pathway. The development of nanomedicines and nanomaterials provides solutions to the therapeutic challenges of clinical drugs. Developing novel tumor nano-PANoptosis inducers by leveraging the advantages of nanomedicine is of research value. Traditional Chinese medicine (TCM) treatment is characterized by multiple targets, and it has distinct advantages in triggering PANoptosis through multiple pathways. Additionally, photodynamic Therapy (PDT) may offer new insights into promoting PANoptosis in tumor cells by increasing oxidative stress and reactive oxygen species levels. These will establish a solid theoretical groundwork for the development of integrated treatment methodologies.
Collapse
Affiliation(s)
- Ziheng Cui
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yao Bi
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Wenjing Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Department of Anesthesia, Affiliated Hospital of Yanbian University, Yanji, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.
| |
Collapse
|
13
|
Wang X, Gao L, Li H, Ma Y, Wang B, Gu B, Li X, Xiang L, Bai Y, Ma C, Chen H. Integrative analysis of multi-omics data identified PLG as key gene related to Anoikis resistance and immune phenotypes in hepatocellular carcinoma. J Transl Med 2024; 22:1104. [PMID: 39633373 PMCID: PMC11616313 DOI: 10.1186/s12967-024-05858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE The extracellular matrix (ECM) plays a pivotal role in the initiation and progression of hepatocellular carcinoma (HCC) by facilitating the proliferation of HCC cells and enabling resistance to Anoikis. ECM also provide structural support that aids in the invasion of HCC cells, thereby influencing the tumor microenvironment. Due to genetic variations and molecular heterogeneity, significant challenges exist in the treatment of HCC, particularly with immunotherapy, which frequently leads to immune tolerance and suboptimal immune responses. Therefore, there is an urgent need for a multi-omics-based classification system for HCC that clarifies the molecular mechanisms underlying the establishment of immune phenotypes and Anoikis resistance in HCC cells. In this study, we employed advanced clustering algorithms to analyze and integrate multi-omics data from HCC patients, with the objective of identifying key genes that possess prognostic potential associated with the Anoikis resistance phenotype. This methodology resulted in the development of a consensus machine learning-driven signature (CMLS), which demonstrates robust predictive capabilities by examining variations in epigenetics, transcription, and immune metabolism, as well as their effects on the core differential gene, plasminogen (PLG). RESULTS The integrated multi-omics approach has identified PLG as a critical node within the gene regulatory network associated with Anoikis resistance and immunometabolic phenotypes. As an independent risk factor for poor prognosis in patients with HCC, PLG facilitates Anoikis resistance and enhances the migration of HCC cells. This study provides novel insights into the molecular subtypes of HCC through the application of robust clustering algorithms based on multi-omics data. The constructed CMLS serves as a valuable tool for early prognostic prediction and for screening potential drug candidates that may enhance the efficacy of immunotherapy, thereby establishing a foundation for personalized treatment strategies in HCC. CONCLUSIONS Our data underscore the pivotal role of PLG in the development of Anoikis resistance and the immunometabolic phenotype in HCC cells. Furthermore, we present compelling experimental evidence that PLG functions as a significant tumor promoter, suggesting its potential as a target for the formulation of tailored therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xueyan Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Haiyuan Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yanling Ma
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Baohong Gu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xuemei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yuping Bai
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Nuclear Magnetic, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chenhui Ma
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China.
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Hao Q, Gao W, Zhang P, Yan P. Identification of PANoptosis-Related Genes in Community-Acquired Pneumonia Diagnosis. J Inflamm Res 2024; 17:10289-10304. [PMID: 39649423 PMCID: PMC11625439 DOI: 10.2147/jir.s491315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024] Open
Abstract
Background This study aimed to identify and characterize novel PANoptosis biomarkers for community-acquired pneumonia (CAP) diagnosis. Methods Transcriptomic data from training set GSE196399 and validation sets GSE94916 and GSE202947 were utilized. A PANoptosis gene set was identified by intersecting DEGs linked to CAP, WGCNA hub genes, and PANoptosis-related genes. GO and KEGG analyses were conducted for enrichment analysis. PANoptosis scores were calculated via ssGSEA. Feature genes were identified using SVM-RFE, LASSO regression, and RF methods. Diagnostic performance was assessed via ROC analysis. Immune cell infiltration was evaluated using CIBERSORT. A PPI network was constructed, and a nomogram was developed for CAP prediction. Drug-gene interactions were investigated. qRT-PCR was conducted to confirm feature gene alterations in clinical samples. Results We identified 7555 DEGs associated with CAP from the GSE196399 dataset. Through WGCNA, a PANoptosis gene set of 39 genes was found, showing significant enrichment in pathways related to apoptosis and inflammation. CAP patients exhibited significantly reduced PANoptosis scores compared to healthy controls, with a marked upregulation in the majority of the PANoptosis gene set in high-score individuals. Four feature genes (ZNF304, AKT3, MAPK8, and ARHGAP10) were identified as potential biomarkers, exhibiting high diagnostic accuracy with AUCs generally above 0.8. These genes also showed significant correlations with M0 macrophages and neutrophils. Drug-gene interaction analysis revealed potential therapeutic agents targeting MAPK8 and AKT3. Validation in clinical samples confirmed gene expression alterations in CAP patients. Conclusion The identified PANoptosis feature genes demonstrate high diagnostic accuracy for CAP, serving as potential biomarkers and therapeutic targets for CAP.
Collapse
Affiliation(s)
- Qiaoxin Hao
- Department of Clinical Laboratory, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| | - Wei Gao
- Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| | - Pei Zhang
- Department of Clinical Laboratory, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| | - Peng Yan
- Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, People’s Republic of China
| |
Collapse
|
15
|
Liu D, Chen W, Han Z, Wang Y, Liu W, Ling A, Wu Q, Li H, Guo H. Identification of PANoptosis-relevant subgroups and predicting signature to evaluate the prognosis and immune landscape of patients with biliary tract cancer. Hepatol Int 2024; 18:1792-1803. [PMID: 39127853 PMCID: PMC11632078 DOI: 10.1007/s12072-024-10718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND This study conducted molecular subtyping of biliary tract cancer patients based on 19 PANoptosis-related gene signatures. METHODS Through consensus clustering, patients were categorized into two subtypes, A and B. By integrating multi-omics data and clinical information from different cohorts, we elucidated the association between different subtypes of biliary tract cancer and patient prognosis, which correlated with the immune infiltration characteristics of patients. RESULTS LASSO regression analysis was performed on the 19 gene signatures, and we constructed and validated a 9-gene risk score prognostic model that accurately predicts the overall survival rate of different biliary tract cancer patients. Additionally, we developed a predictive nomogram demonstrating the clinical utility and robustness of our model. Further analysis of the risk score-based immune landscape highlighted potential associations with immune cell infiltration, chemotherapy, and immune therapy response. CONCLUSION Our study provides valuable insights into personalized treatment strategies for biliary tract cancer, which are crucial for improving patient prognosis and guiding treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenshuai Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiqiang Han
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wei Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Aomei Ling
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Huikai Li
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
16
|
Zhang L, Yu Y, Li G, Li J, Ma X, Ren J, Liu N, Guo S, Li J, Cai J. Identification of PANoptosis-based signature for predicting the prognosis and immunotherapy response in AML. Heliyon 2024; 10:e40267. [PMID: 39634422 PMCID: PMC11616514 DOI: 10.1016/j.heliyon.2024.e40267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/21/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background In recent years, the incidence of acute myeloid leukemia (AML) has increased rapidly with a suboptimal prognosis. In AML, cell death is independent of tumorigenesis, tumor invasion, and drug resistance. PANoptosis is a newly discovered form of cell death that combines pyroptosis, apoptosis, and necroptosis. However, no studies have explored the role of PANoptosis-based signatures in AML. Methods We screened for PANoptosis-related genes and established a PANoptosis-risk signature using the least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. We combined TCGA, bulk RNA sequencing, and single-cell sequencing to investigate the correlation between candidate genes and the AML tumor microenvironment. Results The PANoptosis risk signature effectively predicted prognosis with good sensitivity and specificity. The risk score emerged as an independent prognostic factor. Functional enrichment analysis of PANoptosis-related differentially expressed genes suggested that the risk score may be related to cell immunity. Patients with high-risk scores exhibited increased immune cell infiltration, implying a hot tumor immune microenvironment. The risk score was positively correlated with the immune scores and expression levels of immune checkpoints. Therefore, we identified three model factors, BIRC3, PELI1, and PRKACG, as predictors for immunotherapy efficacy. Single-cell sequencing analysis demonstrated that PELI1 and BIRC3 may participate in the regulation of the AML immune microenvironment. Finally, we performed a drug sensitivity analysis to target BIRC3 and PELI1 using molecular docking and molecular dynamics simulations. Conclusion Our study established and verified a PANoptosis risk signature to predict the survival and immunological treatment response in AML.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Yanan Yu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Guiqing Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Jiachun Li
- Department of Information Engineering, Weifang Vocational College of Food Science and Technology, Weifang, 262100, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Na Liu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261053, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Jinwei Cai
- Department of Oncology, People's Hospital of Kecheng District, Quzhou, 324000, Zhejiang, China
| |
Collapse
|
17
|
Wang W, Lu J, Pan N, Zhang H, Dai J, Li J, Chi C, Zhang L, Wang L, Zhang M. Identification of early Alzheimer's disease subclass and signature genes based on PANoptosis genes. Front Immunol 2024; 15:1462003. [PMID: 39650656 PMCID: PMC11621049 DOI: 10.3389/fimmu.2024.1462003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is one of the most prevalent forms of dementia globally and remains an incurable condition that often leads to death. PANoptosis represents an emerging paradigm in programmed cell death, integrating three critical processes: pyroptosis, apoptosis, and necroptosis. Studies have shown that apoptosis, necroptosis, and pyroptosis play important roles in AD development. Therefore, targeting PANoptosis genes might lead to novel therapeutic targets and clinically relevant therapeutic approaches. This study aims to identify different molecular subtypes of AD and potential drugs for treating AD based on PANoptosis. Methods Differentially expressed PANoptosis genes associated with AD were identified via Gene Expression Omnibus (GEO) dataset GSE48350, GSE5281, and GSE122063. Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to construct a risk model linked to these PANoptosis genes. Consensus clustering analysis was conducted to define AD subtypes based on these genes. We further performed gene set variation analysis (GSVA), functional enrichment analysis, and immune cell infiltration analysis to investigate differences between the identified AD subtypes. Additionally, a protein-protein interaction (PPI) network was established to identify hub genes, and the DGIdb database was consulted to identify potential therapeutic compounds targeting these hub genes. Single-cell RNA sequencing analysis was utilized to assess differences in gene expression at the cellular level across subtypes. Results A total of 24 differentially expressed PANoptosis genes (APANRGs) were identified in AD, leading to the classification of two distinct AD subgroups. The results indicate that these subgroups exhibit varying disease progression states, with the early subtype primarily linked to dysfunctional synaptic signaling. Furthermore, we identified hub genes from the differentially expressed genes (DEGs) between the two clusters and predicted 38 candidate drugs and compounds for early AD treatment based on these hub genes. Single-cell RNA sequencing analysis revealed that key genes associated with the early subtype are predominantly expressed in neuronal cells, while the differential genes for the metabolic subtype are primarily found in endothelial cells and astrocytes. Conclusion In summary, we identified two subtypes, including the AD early synaptic abnormality subtype as well as the immune-metabolic subtype. Additionally, ten hub genes, SLC17A7, SNAP25, GAD1, SLC17A6, SLC32A1, PVALB, SYP, GRIN2A, SLC12A5, and SYN2, were identified as marker genes for the early subtype. These findings may provide valuable insights for the early diagnosis of AD and contribute to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Wenxu Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jincheng Lu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ningyun Pan
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huiying Zhang
- School of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Jingcen Dai
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Li
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng Chi
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liumei Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Mengying Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
- College of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Wang J, Chen Y, Xu Y, Zhang J, Yang S, Zhou Y, Lei J, Ren R, Chen Y, Zhao H, Li Y, Yang S. DNASE1L3-mediated PANoptosis enhances the efficacy of combination therapy for advanced hepatocellular carcinoma. Theranostics 2024; 14:6798-6817. [PMID: 39479454 PMCID: PMC11519790 DOI: 10.7150/thno.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: The introduction of combination therapy utilizing tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors for advanced hepatocellular carcinoma (HCC) has significantly altered the management of affected patients. However, the absence of predictive biomarkers to identify those who would derive the greatest benefit from this combination therapy underscores the necessity for further enhancements in its efficacy. Methods: In this study, we performed a proteomic analysis on surgical specimens from patients who either responded to or did not respond to combination therapy with sorafenib and programmed death-1 (PD-1) monoclonal antibody (mAb). We employed in vitro experiments, including immunocytochemistry, co-immunoprecipitation, and transmission electron microscopy, to elucidate the mechanism of DNASE1L3-induced PANoptosis. Additionally, we assessed the function of DNASE1L3 in combination therapy using a mouse liver orthotopic tumor model and clinical samples. Results: Our findings indicated that the levels of deoxyribonuclease 1 like 3 (DNASE1L3) were significantly elevated in the cohort of patients who responded to treatment, correlating with the sorafenib-induced programmed cell death (PCD) of HCC cells. Further experimentation revealed that DNASE1L3 facilitated the generation of double-strand deoxyribonucleic acid (dsDNA) breaks and activated the absent in melanoma 2 (AIM2) pathway during sorafenib-induced HCC cell death, ultimately culminating in PANoptosis. Moreover, DNASE1L3-induced PANoptosis augmented the activation of anti-tumor immunity within the tumor microenvironment (TME), thereby enhancing the efficacy of the combination therapy involving sorafenib and PD-1 mAb. Conclusion: Our findings offer valuable insights into the mechanisms underlying DNASE1L3's role in sorafenib sensitivity and position DNASE1L3 as a promising predictive biomarker and target for improving outcomes in combination therapy for HCC.
Collapse
Affiliation(s)
- Jingchun Wang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University; Chongqing 400037, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Second Affiliated Hospital, Army Medical University; Chongqing 400037, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Shuai Yang
- Department of Pathology, First Affiliated Hospital, Army Medical University; Chongqing 400037, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Ran Ren
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Yang Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Shiming Yang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University; Chongqing 400037, China
| |
Collapse
|
19
|
Riveros-Gomez I, Vasquez-Marin J, Huerta-Garcia EX, Camargo-Ayala PA, Rivera C. Aphthous stomatitis - computational biology suggests external biotic stimulus and immunogenic cell death involved. BMC Oral Health 2024; 24:1154. [PMID: 39343890 PMCID: PMC11440928 DOI: 10.1186/s12903-024-04917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The exact cause of recurrent aphthous stomatitis is still unknown, making it a challenge to develop effective treatments. This study employs computational biology to investigate the molecular basis of recurrent aphthous stomatitis, aiming to identify the nature of the stimuli triggering these ulcers and the type of cell death involved. METHODS To understand the molecular underpinnings of recurrent aphthous stomatitis, we used the Génie tool for gene identification, targeting those associated with cell death in recurrent aphthous stomatitis. The ToppGene Suite was employed for functional enrichment analysis. We also used Reactome and InteractiVenn for protein integration and prioritization against a PANoptosis gene list, enabling the construction of a protein-protein interaction network to pinpoint key proteins in recurrent aphthous stomatitis pathogenesis. RESULTS The study's computational approach identified 1,375 protein-coding genes linked to recurrent aphthous stomatitis. Critical among these were proteins responsive to bacterial stimuli, especially high mobility group protein B1 (HMGB1), toll-like receptor 2 (TLR2), and toll-like receptor 4 (TLR4). The enrichment analysis suggested an external biotic factor, likely bacterial, as a triggering agent in recurrent aphthous stomatitis. The protein interaction network highlighted the roles of tumor necrosis factor (TNF), NF-kappa-B essential modulator (IKBKG), and tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), indicating an immunogenic cell death mechanism, potentially PANoptosis, in recurrent aphthous stomatitis. CONCLUSION The findings propose that bacterial stimuli could trigger recurrent aphthous stomatitis through a PANoptosis-related cell death pathway. This new understanding of recurrent aphthous stomatitis pathogenesis underscores the significance of oral microbiota in the condition. Future experimental validation and therapeutic strategy development based on these findings are necessary.
Collapse
Affiliation(s)
- Ignacio Riveros-Gomez
- Laboratorio de Histopatología Oral y Maxilofacial, Unidad de Medicina Oral y Patología Oral, Departamento de Estomatología, Facultad de Odontología, Universidad de Talca, Avenida Lircay S/N, Campus Norte Universidad de Talca, Edificio de Ciencias Biomédicas, Oficina N°4, Talca, 3460000, Región del Maule, Chile
| | - Joaquin Vasquez-Marin
- Laboratorio de Histopatología Oral y Maxilofacial, Unidad de Medicina Oral y Patología Oral, Departamento de Estomatología, Facultad de Odontología, Universidad de Talca, Avenida Lircay S/N, Campus Norte Universidad de Talca, Edificio de Ciencias Biomédicas, Oficina N°4, Talca, 3460000, Región del Maule, Chile
| | - Elisa Ximena Huerta-Garcia
- Laboratorio de Histopatología Oral y Maxilofacial, Unidad de Medicina Oral y Patología Oral, Departamento de Estomatología, Facultad de Odontología, Universidad de Talca, Avenida Lircay S/N, Campus Norte Universidad de Talca, Edificio de Ciencias Biomédicas, Oficina N°4, Talca, 3460000, Región del Maule, Chile
| | - Paola Andrea Camargo-Ayala
- Laboratorio de Histopatología Oral y Maxilofacial, Unidad de Medicina Oral y Patología Oral, Departamento de Estomatología, Facultad de Odontología, Universidad de Talca, Avenida Lircay S/N, Campus Norte Universidad de Talca, Edificio de Ciencias Biomédicas, Oficina N°4, Talca, 3460000, Región del Maule, Chile
| | - Cesar Rivera
- Laboratorio de Histopatología Oral y Maxilofacial, Unidad de Medicina Oral y Patología Oral, Departamento de Estomatología, Facultad de Odontología, Universidad de Talca, Avenida Lircay S/N, Campus Norte Universidad de Talca, Edificio de Ciencias Biomédicas, Oficina N°4, Talca, 3460000, Región del Maule, Chile.
| |
Collapse
|
20
|
Zhang M, Li W, Zhao Y, Qi L, Xiao Y, Liu D, Peng T. Molecular characterization analysis of PANoptosis-related genes in colorectal cancer based on bioinformatic analysis. PLoS One 2024; 19:e0307651. [PMID: 39186800 PMCID: PMC11346968 DOI: 10.1371/journal.pone.0307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the second principal contributor to cancer-related fatalities. Recently, emerging research has emphasized the role of pan apoptosis (PANoptosis) in tumor development and anti-tumor therapy. In the course of this investigation, we meticulously identified and conducted a correlation analysis between differentially expressed genes associated with PANoptosis in CRC (CPAN_DEGs) and the proportion of immune cells. Subsequently, we formulated a prognostic score based on the CPAN_DEGs. Further our analysis revealed a noteworthy reduction in UNC5D mRNA expression within HCT116, HT29 and SW480 cells, as validated by qRT-PCR assay. Furthermore, scrutinizing the TCGA database unveiled a distinctive trend wherein individuals with the low UNC5D expression exhibited significantly reduced overall survival compared to their counterparts with the high UNC5D levels. The drug susceptibility analysis of UNC5D was further performed, which showed that UNC5D was corassociated with the sensitivity of CRC to 6-Thioguanine. The outcomes of our investigation underscore the mechanisms by which PANoptosis influences immune dysregulation as well as prognostic outcome in CRC.
Collapse
Affiliation(s)
- Mengyang Zhang
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Wen Li
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
- College of Pharmacy, Dali University, Yunnan, China
| | - Yubo Zhao
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Yonglong Xiao
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Donglian Liu
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - TieLi Peng
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| |
Collapse
|
21
|
Tian L, Sang Y, Han B, Sun Y, Li X, Feng Y, Qin C, Qi J. Gene signature developed based on programmed cell death to predict the therapeutic response and prognosis for liver hepatocellular carcinoma. Heliyon 2024; 10:e34704. [PMID: 39130419 PMCID: PMC11315169 DOI: 10.1016/j.heliyon.2024.e34704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Background The prognosis and therapeutic response of patients with liver hepatocellular carcinoma (LIHC) can be predicted based on programmed cell death (PCD) as PCD plays a crucial role during tumor progression. We developed a PCD-related gene signature to evaluate the therapeutic response and prognosis for patients with LIHC. Methods Molecular subtypes of LIHC were classified using ConsensusClusterPlus according to the gene biomarkers related to PCD. To predict the prognosis of high- and low-risk LIHC patients, a risk model was established by LASSO regression analysis based on the prognostic genes. Functional enrichment analysis was conducted using clusterProfiler package, and relative abundance of immune cells was quantified applying CIBERSORT package. Finally, to determine drug sensitivity, oncoPredict package was employed. Results PCD was correlated with the clinicopathologic features of LIHC. Then, we defined four molecular subtypes (C1-C4) of LIHC using PCD-related prognostic genes. Specifically, subtype C1 had the worst prognosis with enriched T cells regulatory (Tregs) and Macrophage_M0 and higher expression of T cell exhaustion markers, meanwhile, C1 also had a relatively higher TIDE score and metastasis potential. A risk model was established using 5 prognostic genes. High-risk patients tended to have higher expression of T cell exhaustion markers and TIDE score and unfavorable outcomes, and they were more sensitive to small molecule drug 5.Fluorouracil. Conclusion A PCD-related gene signature was developed and verified to be able to accurately predict the prognosis and drug sensitivity of LIHC patients.
Collapse
Affiliation(s)
- Lijun Tian
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yujie Sang
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Bing Han
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yujing Sun
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Xueyan Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| |
Collapse
|
22
|
Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G, He X. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther 2024; 31:970-983. [PMID: 38553639 PMCID: PMC11257964 DOI: 10.1038/s41417-024-00765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024]
Abstract
This comprehensive review explores the intricate mechanisms of PANoptosis and its implications in cancer. PANoptosis, a convergence of apoptosis, pyroptosis, and necroptosis, plays a crucial role in cell death and immune response regulation. The study delves into the molecular pathways of each cell death mechanism and their crosstalk within PANoptosis, emphasizing the shared components like caspases and the PANoptosome complex. It highlights the significant role of PANoptosis in various cancers, including respiratory, digestive, genitourinary, gliomas, and breast cancers, showing its impact on tumorigenesis and patient survival rates. We further discuss the interwoven relationship between PANoptosis and the tumor microenvironment (TME), illustrating how PANoptosis influences immune cell behavior and tumor progression. It underscores the dynamic interplay between tumors and their microenvironments, focusing on the roles of different immune cells and their interactions with cancer cells. Moreover, the review presents new breakthroughs in cancer therapy, emphasizing the potential of targeting PANoptosis to enhance anti-tumor immunity. It outlines various strategies to manipulate PANoptosis pathways for therapeutic purposes, such as targeting key signaling molecules like caspases, NLRP3, RIPK1, and RIPK3. The potential of novel treatments like immunogenic PANoptosis-initiated therapies and nanoparticle-based strategies is also explored.
Collapse
Affiliation(s)
- Jie Gao
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu, 610000, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
23
|
Yang Z, Kao X, Huang N, Yuan K, Chen J, He M. Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. J Inflamm Res 2024; 17:1941-1956. [PMID: 38562657 PMCID: PMC10984196 DOI: 10.2147/jir.s452608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Sepsis-induced lung injury (SLI) is a serious complication of sepsis. PANoptosis, a novel form of inflammatory programmed cell death that is not yet to be fully investigated in SLI. Our research aims to screen and validate the signature genes of PANoptosis in SLI by bioinformatics and in vivo experiment. Methods SLI-related datasets were downloaded from NCBI Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of SLI were identified and intersected with the PANoptosis gene set to obtain DEGs related to PANoptosis (SPAN_DEGs). Then, Protein-Protein Interaction (PPI) network and functional enrichment analysis were conducted based on SPAN_DEGs. SVM-REF, LASSO and RandomForest three algorithms were combined to identify the signature genes. The Nomogram and ROC curves were performed to predict diagnostic value. Immune infiltration analysis, correlation analysis and differential expression analysis were used to explore the immunological characterization, correlation and expression levels of the signature genes. Finally, H&E staining and qRT-PCR were conducted for further verification in vivo experiment. Results Twenty-four SPAN_DEGs were identified by intersecting 675 DEGs with the 277 PANoptosis genes. Four signature genes (CD14, GSDMD, IL1β, and FAS) were identified by three machine learning algorithms, which were highly expressed in the SLI group, and had high diagnostic value in the diagnostic model. Moreover, immune infiltration analysis showed that most immune cells and immune-related functions were higher in the SLI group than those in the control group and were closely associated with the signature genes. Finally, it was confirmed that the cecum ligation and puncture (CLP) group mice showed significant pathological damage in lung tissues, and the mRNA expression levels of CD14, IL1β, and FAS were significantly higher than the sham group. Conclusion CD14, FAS, and IL1β may be the signature genes in PANoptosis to drive the progression of SLI and involved in regulating immune processes.
Collapse
Affiliation(s)
- Zhen Yang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Xingyu Kao
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Na Huang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Kang Yuan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| |
Collapse
|
24
|
Yang Q, Song W, Reheman H, Wang D, Qu J, Li Y. PANoptosis, an indicator of COVID-19 severity and outcomes. Brief Bioinform 2024; 25:bbae124. [PMID: 38555477 PMCID: PMC10981763 DOI: 10.1093/bib/bbae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been wreaking havoc for 3 years. PANoptosis, a distinct and physiologically relevant inflammatory programmed cell death, perpetuates cytokine storm and multi-organ injuries in COVID-19. Although PANoptosis performs indispensable roles in host defense, further investigation is needed to elucidate the exact processes through which PANoptosis modulates immunological responses and prognosis in COVID-19. This study conducted a bioinformatics analysis of online single-cell RNA sequence (scRNA-seq) and bulk RNA-seq datasets to explore the potential of PANoptosis as an indicator of COVID-19 severity. The degree of PANoptosis in bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) indicated the severity of COVID-19. Single-cell transcriptomics identified pro-inflammatory monocytes as one of the primary sites of PANoptosis in COVID-19. The study subsequently demonstrated the immune and metabolic characteristics of this group of pro-inflammatory monocytes. In addition, the analysis illustrated that dexamethasone was likely to alleviate inflammation in COVID-19 by mitigating PANoptosis. Finally, the study showed that the PANoptosis-related genes could predict the intensive care unit admission (ICU) and outcomes of COVID-19 patients who are hospitalized.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Wanmei Song
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Hanizaier Reheman
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Dan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Yanan Li
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| |
Collapse
|
25
|
Gao F, Zhang M, Ying Z, Li W, Lu D, Wang X, Sha O. A PANoptosis pattern to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Heliyon 2024; 10:e27162. [PMID: 38463811 PMCID: PMC10920724 DOI: 10.1016/j.heliyon.2024.e27162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Individuals diagnosed with head and neck squamous cell carcinoma (HNSCC) experience a significant occurrence rate and are susceptible to premature spreading, resulting in a bleak outlook. Therapeutic approaches, such as chemotherapy, targeted therapy, and immunotherapy, may exhibit primary and acquired resistance during the advanced phases of HNSCC. There is currently no viable solution to tackle this issue. PANoptosis-a type of non-apoptotic cell death-is a recently identified mechanism of cellular demise that entails communication and synchronization among thermal apoptosis, apoptosis, and necrosis mechanisms. However, the extent to which PANoptosis-associated genes (PRG) contribute to the forecast and immune reaction of HNSCC remains mostly undisclosed. The present study aimed to thoroughly analyze the potential importance of PRG in HNSCC and report our discoveries. We systematically analyzed 19 PRG from previous studies and clinical data from HNSCC patients to establish a PAN-related signature and assess its prognostic, predictive potential. Afterward, the patient information was separated into two gene patterns that corresponded to each other, and the analysis focused on the connection between patient prognosis, immune status, and cancer immunotherapy. The PAN score was found to correlate with survival rates, immune systems, and cancer-related pathways. We then validated the malignant role of CD27 among them in HNSCC. In summary, we demonstrated the effectiveness of PAN.Score-based molecular clustering and prognostic features in predicting the outcome of HNSCC. The discovery we made could enhance our comprehension of the significance of PAN.Score in HNSCC and facilitate the development of more effective treatment approaches.
Collapse
Affiliation(s)
- Feng Gao
- School of Dentistry, Institute of Stomatological Research, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Minghuan Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhenguang Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wanqiu Li
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Desheng Lu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ou Sha
- School of Dentistry, Institute of Stomatological Research, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Wang L, Wan P, Xu Z. A novel PANoptosis-related long non-coding RNA index to predict prognosis, immune microenvironment and personalised treatment in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:2410-2437. [PMID: 38284890 PMCID: PMC10911344 DOI: 10.18632/aging.205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND PANoptosis is involved in the interaction of apoptosis, necroptosis and pyroptosis, playing a role in programmed cell death. Moreover, long non-coding RNAs (lncRNAs) regulate the PCD. This work aims to explore the role of PANoptosis-associated lncRNAs in hepatocellular carcinoma (HCC). METHODS Co-expression analysis identified PANoptosis-associated lncRNAs in HCC. Cox and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms were utilised to filter lncRNAs and establish a PANoptosis-related lncRNA index (PANRI). Additionally, Cox, Kaplan-Meier and receiver operating characteristic (ROC) curves were utilised to systematically evaluate the PANRI. Furthermore, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE), single sample gene set enrichment analysis (ssGSEA) and immune checkpoints were performed to analyse the potential of the PANRI in differentiating different tumour immune microenvironment (TIME) populations. The consensus clustering algorithm was used to distinguish individuals with HCC having different TIME subtypes. Finally, HCC cell lines HepG2 were utilised for further validation in in vitro experiments. RESULTS The PANRI differentiates patients according to risk. Notably, ESTIMATE and ssGSEA algorithms revealed a high immune infiltration status in high-risk patients. Additionally, consensus clustering divided the patients into three clusters to identify different subtypes of TIME. Moreover, in vitro results showed that siRNA-mediated silencing of AL049840.4 inhibited the viability and migration of HepG2 cells and promoted apoptosis. CONCLUSIONS This is the first PANoptosis-related, lncRNA-based risk index in HCC to assess patient prognosis, TIME and response to immunotherapy. This study offers novel perspectives on the role of PANoptosis-associated lncRNAs in HCC.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Peng Wan
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Zhengyang Xu
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Peng F, Zhu F, Cao B, Peng L. Multidimensional Analysis of PANoptosis-Related Molecule CASP8: Prognostic Significance, Immune Microenvironment Effect, and Therapeutic Implications in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:2406193. [PMID: 38186679 PMCID: PMC10771335 DOI: 10.1155/2023/2406193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) presents significant challenges in diagnosis and treatment. Understanding the role of PANoptosis-related molecules in HCC is crucial for advancing therapeutic strategies. Methods We conducted a comprehensive analysis using public data from the Cancer Genome Atlas, Human Protein Atlas, Tumor Immune Single Cell Hub, and STRING databases. Techniques included Kaplan-Meier survival curves, Cox regression, LASSO analysis, and various computational methods for understanding the tumor microenvironment. We also employed ClueGO, gene set enrichment analysis, and other algorithms for biological enrichment analysis. Results CASP8 emerged as a significant molecule in HCC, correlated with poor survival outcomes. Its expression was predominant in the nucleoplasm and cytosol and varied across different cancer types. Biological enrichment analysis revealed CASP8's association with critical cellular activities and immune responses. In the tumor microenvironment, CASP8 showed correlations with various immune cell types. A nomogram plot was developed for better clinical prognostication. Mutation analysis indicated a higher frequency of TP53 mutations in patients with elevated CASP8 expression. In addition, CASP8 was found to regulate YEATS2 in HCC, highlighting a potential pathway in tumor progression. Conclusions Our study underscores the multifaceted role of CASP8 in HCC, emphasizing its prognostic and therapeutic significance. The regulatory relationship between CASP8 and YEATS2 opens new avenues for understanding HCC pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Fei Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Fang Zhu
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Baodi Cao
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| | - Liang Peng
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, Jiangxi, China
| |
Collapse
|
28
|
Song F, Chen Z. Preclinical liver cancer models in the context of immunoprecision therapy: Application and perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:989-1000. [DOI: 10.11569/wcjd.v31.i24.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality globally, continues to pose challenges in achieving optimal treatment outcomes. The complex nature of HCC, characterized by high spatiotemporal heterogeneity, invasive potential, and drug resistance, presents difficulties in its research. Consequently, an in-depth understanding and accurate simulation of the immune microenvironment of HCC are of paramount importance. This article comprehensively explores the application of preclinical models in HCC research, encompassing cell line models, patient-derived xenograft mouse models, genetically engineered mouse models, chemically induced models, humanized mouse models, organoid models, and microfluidic chip-based patient derived organotypic spheroids models. Each model possesses its distinct advantages and limitations in replicating the biological behavior and immune microenvironment of HCC. By scrutinizing the limitations of existing models, this paper aims to propel the development of next-generation cancer models, enabling more precise emulation of HCC characteristics. This will, in turn, facilitate the optimization of treatment strategies, drug efficacy prediction, and safety assessments, ultimately contributing to the realization of personalized and precision therapies. Additionally, this article also provides insights into future trends and challenges in the fields of tumor biology and preclinical research.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
29
|
Xiong Y. The emerging role of PANoptosis in cancer treatment. Biomed Pharmacother 2023; 168:115696. [PMID: 37837884 DOI: 10.1016/j.biopha.2023.115696] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
Programmed cell death (PCD) is a key mechanism for the study of anticancer drugs and has a significant impact on the development and management of cancer. A growing amount of data indicates that different kinds of PCD, particularly pyroptosis, apoptosis, and necroptosis, interact closely. Recent research has revealed the existence of the distinct inflammatory PCD modality known as PANoptosis, which is controlled by complex PANoptosome complexes built by combining elements from different PCD pathways. No single PCD route is sufficient to explain all of the physiologic effects seen in PANoptosis. Numerous studies have demonstrated that PANoptosis can successfully stop cancer cells from growing, proliferating, and developing drug resistance. As a result, it has changed the focus of targeted anticancer therapy. In this review, we outlined the molecular processes of PANoptosis activation and modulation as well as the mechanisms of innate immune cell death. In order to provide a theoretical foundation for the development of drugs targeting PANoptosis as an anti-cancer target, we also highlight the PANoptosomes discovered to date and give an overview of the implications of PANoptosis in cancer treatment.
Collapse
Affiliation(s)
- Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province, and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International, Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|