1
|
Natama HM, Salkeld J, Somé A, Soremekun S, Diallo S, Traoré O, Rouamba T, Ouédraogo F, Ouédraogo E, Daboné KCS, Koné NA, Compaoré ZMJ, Kafando M, Bonko MDA, Konaté F, Sorgho H, Nielsen CM, Pipini D, Diouf A, King LDW, Shaligram U, Long CA, Cho JS, Lawrie AM, Skinner K, Roberts R, Miura K, Bradley J, Silk SE, Draper SJ, Tinto H, Minassian AM. Safety and efficacy of the blood-stage malaria vaccine RH5.1/Matrix-M in Burkina Faso: interim results of a double-blind, randomised, controlled, phase 2b trial in children. THE LANCET. INFECTIOUS DISEASES 2025; 25:495-506. [PMID: 39672183 DOI: 10.1016/s1473-3099(24)00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Two pre-erythrocytic vaccines (R21/Matrix-M and RTS,S/AS01) are now approved for Plasmodium falciparum malaria. However, neither induces blood-stage immunity against parasites that break through from the liver. RH5.1/Matrix-M, a blood-stage P falciparum malaria vaccine candidate, was highly immunogenic in Tanzanian adults and children. We therefore assessed the safety and efficacy of RH5.1/Matrix-M in Burkinabe children. METHODS In this double-blind, randomised, controlled, phase 2b trial, RH5.1/Matrix-M was given to children aged 5-17 months in Nanoro, Burkina Faso, a seasonal malaria transmission setting. Children received either three intramuscular vaccinations with 10 μg RH5.1 protein with 50 μg Matrix-M adjuvant or three doses of rabies control vaccine, Rabivax-S, given either in a delayed third-dose (0, 1, and 5 month) regimen (first cohort) or a 0, 1, and 2 month regimen (second cohort). Vaccinations were completed part way through the malaria season. Children were randomly assigned 2:1 within each cohort to receive RH5.1/Matrix-M or Rabivax-S. Participants were assigned according to a random allocation list generated by an independent statistician using block randomisation with variable block sizes. Participants, their families, and the study teams were masked to group allocation; only pharmacists who prepared the vaccines were unmasked. Vaccine safety, immunogenicity, and efficacy were evaluated. The coprimary outcomes assessed were: first, the safety and reactogenicity of RH5.1/Matrix-M; and second, the protective efficacy of RH5.1/Matrix-M against clinical malaria (measured as time to first episode of clinical malaria, using a Cox regression model) from 14 days to 6 months after the third vaccination in the per-protocol sample. This ongoing trial is registered with ClinicalTrials.gov (NCT05790889). FINDINGS From April 6 to 13 and July 3 to 7, 2023, 412 children aged 5-17 months were screened, and 51 were excluded. A total of 361 children were enrolled in this study. In the first cohort, 119 were assigned to the RH5.1/Matrix-M delayed third-dose group, and 62 to the equivalent rabies control group. The second cohort included 120 children in the monthly RH5.1/Matrix-M group and 60 in the equivalent rabies control group. The final vaccination was administered to all groups from Sept 4 to 21, 2023. RH5.1/Matrix-M in both cohorts had a favourable safety profile and was well tolerated. Most adverse events were mild, with the most common being local swelling and fever. No serious adverse events were reported. Comparing the RH5.1/Matrix-M delayed third-dose regimen with the pooled control groups resulted in a vaccine efficacy of 55% (95% CI 20 to 75%; p=0·0071). The same analysis showed a vaccine efficacy of 40% (-3 to 65%; p=0·066) when comparing the monthly regimen with the pooled control groups. Participants vaccinated with RH5.1/Matrix-M in both cohorts showed high concentrations of anti-RH5.1 serum IgG antibodies 14 days after the third vaccination, and the purified IgG showed high levels of in vitro growth inhibition activity against P falciparum; these responses were higher in patients who received the RH5.1/Matrix-M vaccine delayed third-dose regimen, as opposed to monthly regimen (growth inhibition activity 79·0% [SD 14·3] vs 74·2% [SD 15·9]; p=0·016). INTERPRETATION RH5.1/Matrix-M appears safe and highly immunogenic in African children and shows promising efficacy against clinical malaria when given in a delayed third-dose regimen. This trial is ongoing to further monitor efficacy over time. FUNDING The European and Developing Countries Clinical Trials Partnership, the UK Medical Research Council, the National Institute for Health and Care Research Oxford Biomedical Research Centre, the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, the US Agency for International Development, and the Wellcome Trust.
Collapse
Affiliation(s)
- Hamtandi M Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Jo Salkeld
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Seyi Soremekun
- London School of Hygiene and Tropical Medicine, London, UK
| | - Salou Diallo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Ousmane Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Florence Ouédraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Edouard Ouédraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - K Carine Sonia Daboné
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Nadine A Koné
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Z Michael John Compaoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Miguel Kafando
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Massa Dit Achille Bonko
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Fabé Konaté
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Carolyn M Nielsen
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dimitra Pipini
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lloyd D W King
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jee-Sun Cho
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Katherine Skinner
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Rachel Roberts
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - John Bradley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Sarah E Silk
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Angela M Minassian
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Deshmukh B, Khatri D, Kochar SK, Athale C, Karmodiya K. In vitro evaluation of multi-protein chimeric antigens in effectively clearing the blood stage of Plasmodium falciparum. Vaccine 2025; 53:126952. [PMID: 40037124 DOI: 10.1016/j.vaccine.2025.126952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Plasmodium falciparum-induced malaria remains a fatal disease affecting millions of people worldwide. Mainly, the blood stage of malaria is highly pathogenic and symptomatic, rapidly damaging the host organs and occasionally leading to death. Currently, no vaccines are approved for use against the blood stage of malaria. Canonical vaccines in the past have selected the most immunodominant or essential protein to block the growth of the parasite. This strategy works efficiently for low-complexity organisms such as viruses and a few bacteria but has not shown promising results for a malaria vaccine. Plasmodium has a complex life cycle and vaccine candidates especially during blood stage are ineffective due to multiple gene families showing redundancy, immune evasion, and insufficient antibody titer. Herein, we demonstrate a strategy of combining multiple antigens from the blood stage of Plasmodium falciparum using only the most immunodominant peptide sequences as a way of tackling polymorphism and redundancy. We created three chimeric antigens targeting eight PfEMP1 proteins (chimeric varB) and eight merozoite surface proteins (chimeric MSP and InvP) by selecting and stitching B-cell epitopes. Our chimeric constructs show naturally circulating antibodies against individual peptides using epitope-mapping microarray as well as entire proteins in malaria-infected patients. We demonstrate that anti-varB antibodies are neutralizing in nature and significantly reduce the cytoadhesion on an organ-on-chip system with a microfluidic device mimicking physiological conditions. We have applied a Deep Learning based method to quantify the number of adhered RBCs under fluidic conditions that is used to study cytoadhesion. Furthermore, the anti-MSP and InvP antibodies show complete growth inhibition in a single cycle at a combined concentration of 0.13 mg/ml. Overall, our preliminary results show that a combination of antigenic peptides from multiple antigens can potentially effectively reduce cytoadhesion and clear blood stage infection in in-vitro settings.
Collapse
Affiliation(s)
- Bhagyashree Deshmukh
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - Dhruv Khatri
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | | | - Chaitanya Athale
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - Krishanpal Karmodiya
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India.
| |
Collapse
|
3
|
Chutiyami M, Saravanakumar P, Bello UM, Salihu D, Adeleye K, Kolo MA, Dawa KK, Hamina D, Bhandari P, Sulaiman SK, Sim J. Malaria vaccine efficacy, safety, and community perception in Africa: a scoping review of recent empirical studies. Infection 2024; 52:2007-2028. [PMID: 38441731 PMCID: PMC11499420 DOI: 10.1007/s15010-024-02196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 10/24/2024]
Abstract
AIM The review summarizes the recent empirical evidence on the efficacy, safety, and community perception of malaria vaccines in Africa. METHODS Academic Search Complete, African Journals Online, CINAHL, Medline, PsychInfo, and two gray literature sources were searched in January 2023, and updated in June 2023. Relevant studies published from 2012 were included. Studies were screened, appraised, and synthesized in line with the review aim. Statistical results are presented as 95% Confidence Intervals and proportions/percentages. RESULTS Sixty-six (N = 66) studies met the inclusion criteria. Of the vaccines identified, overall efficacy at 12 months was highest for the R21 vaccine (N = 3) at 77.0%, compared to the RTS,S vaccine (N = 15) at 55%. The efficacy of other vaccines was BK-SE36 (11.0-50.0%, N = 1), ChAd63/MVA ME-TRAP (- 4.7-19.4%, N = 2), FMP2.1/AS02A (7.6-9.9%, N = 1), GMZ2 (0.6-60.0%, N = 5), PfPZ (20.0-100.0%, N = 5), and PfSPZ-CVac (24.8-33.6%, N = 1). Injection site pain and fever were the most common adverse events (N = 26), while febrile convulsion (N = 8) was the most reported, vaccine-related Serious Adverse Event. Mixed perceptions of malaria vaccines were found in African communities (N = 17); awareness was generally low, ranging from 11% in Tanzania to 60% in Nigeria (N = 9), compared to willingness to accept the vaccines, which varied from 32.3% in Ethiopia to 96% in Sierra Leone (N = 15). Other issues include availability, logistics, and misconceptions. CONCLUSION Malaria vaccines protect against malaria infection in varying degrees, with severe side effects rarely occurring. Further research is required to improve vaccine efficacy and community involvement is needed to ensure successful widespread use in African communities.
Collapse
Affiliation(s)
- Muhammad Chutiyami
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia.
| | - Priya Saravanakumar
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | - Umar Muhammad Bello
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Dauda Salihu
- College of Nursing, Jouf University, Sakaka, Saudi Arabia
| | - Khadijat Adeleye
- College of Nursing, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Kabiru Kasamu Dawa
- School of Nursing, Midwifery and Health Education, University of Bedfordshire, Luton, UK
| | - Dathini Hamina
- Department of Nursing Science, University of Maiduguri, Maiduguri, Nigeria
| | - Pratibha Bhandari
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | | | - Jenny Sim
- WHO Collaborating Centre for Nursing, Midwifery and Health Development, University of Technology Sydney, Sydney, Australia
- School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Sydney, Australia
| |
Collapse
|
4
|
Arisue N, Palacpac NMQ. Asymptomatic parasitemia and RTS,S vaccine efficacy. THE LANCET. INFECTIOUS DISEASES 2024; 24:942-944. [PMID: 38723649 DOI: 10.1016/s1473-3099(24)00214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 08/25/2024]
Affiliation(s)
- Nobuko Arisue
- Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo, Japan
| | - Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Palacpac NMQ, Ishii KJ, Arisue N, Tougan T, Horii T. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitol Int 2024; 99:102845. [PMID: 38101534 DOI: 10.1016/j.parint.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Nebie I, Palacpac NMQ, Bougouma EC, Diarra A, Ouédraogo A, D’Alessio F, Houard S, Tiono AB, Cousens S, Horii T, Sirima SB. Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5-10-Year-Old Burkinabe Children Naturally Exposed to Malaria. Vaccines (Basel) 2024; 12:166. [PMID: 38400149 PMCID: PMC10892924 DOI: 10.3390/vaccines12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Edith Christiane Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| |
Collapse
|
7
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|