1
|
Sonar S, Das A, Yeong Zher L, Narayanan Ravi R, Zheng Kong EQ, Dhar R, Narayanan K, Gorai S, Subramaniyan V. Exosome-Based Sensor: A Landmark of the Precision Cancer Diagnostic Era. ACS APPLIED BIO MATERIALS 2025. [PMID: 40366154 DOI: 10.1021/acsabm.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Extracellular vesicles are nanoscale vesicles released by a diversity of cells that mediate intercellular communication by transporting an array of biomolecules. They are gaining increasing attention in cancer research due to their ability to carry specific biomarkers. This characteristic makes them potentially useful for highly sensitive, noninvasive diagnostic procedures and more precise prognostic assessments. Consequently, EVs are emerging as a transformative tool in cancer treatment, facilitating early detection and personalized medicine. Despite significant progress, clinical implementation is hindered by challenges in EV isolation, purification, and characterization. However, developing advanced biosensor technologies offers promising solutions to these obstacles. This review highlights recent progress in biosensors for EV detection and analysis, focusing on various sensing modalities including optical, electrochemical, microfluidic, nanomechanical, and biological sensors. We also explore techniques for EV isolation, characterization, and analysis, such as electron microscopy, atomic force microscopy, nanoparticle tracking analysis, and single-particle analysis. Furthermore, the review critically assesses the challenges associated with EV detection and put forward future directions, aiming to usher in a cutting-edge era of precision medicine through advanced, sensor-based, noninvasive early cancer diagnosis by detecting EV-carried biomarkers.
Collapse
Affiliation(s)
- Swarup Sonar
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Asmit Das
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Lee Yeong Zher
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Ram Narayanan Ravi
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Eason Qi Zheng Kong
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Rajib Dhar
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| | - Kumaran Narayanan
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
2
|
Abida, Alhuthali HM, Alshehri JM, Alkathiri A, Almaghrabi ROM, Alsaeed SS, Albebi SAH, Almethn RM, Alfuraydi BA, Alharbi SB, Kamal M, Imran M. Exosomes in infectious diseases: insights into leishmaniasis pathogenesis, immune modulation, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4913-4931. [PMID: 39702600 DOI: 10.1007/s00210-024-03702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Leishmaniasis continues to be a critical international health issue due to the scarcity of efficient treatment and the development of drug tolerance. New developments in the research of extracellular vesicles (EVs), especially exosomes, have revealed novel disease management approaches. Exosomes are small vesicles that transport lipids, nucleic acids, and proteins in cell signalling. Its biogenesis depends on several cellular processes, and their functions in immune response, encompassing innate and adaptive immunity, underline their function in the pathogen-host interface. Exosomes play a significant role in the pathogenesis of some parasitic infections, especially Leishmaniasis, by helping parasites escape host immunity and promote disease progression. This article explains that in the framework of parasitic diseases, exosomes can act as master regulators that define the pathogenesis of the disease, as illustrated by the engagement of exosomes in the Leishmaniasis parasite and immune escape processes. Based on many published articles on Leishmaniasis, this review aims to summarize the biogenesis of exosomes, the properties of the cargo in exosomes, and the modulation of immune responses. We delve deeper into the prospect of using exosomes for the therapy of Leishmaniasis based on the possibility of using these extracellular vesicles for drug delivery and as diagnostic and prognostic biomarkers. Lastly, we focus on the recent research perspectives and future developments, underlining the necessity to continue the investigation of exosome-mediated approaches in Leishmaniasis treatment. Thus, this review intends to draw attention to exosomes as a bright new perspective in the battle against this disabling affliction.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Jawaher Mohammad Alshehri
- Optometry Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Afnan Alkathiri
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | - Ruba Omar M Almaghrabi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, 65431, Albaha, Saudi Arabia
| | | | | | | | | | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
3
|
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, Ashraf A, Rizwan M, Kesari KK, Tabish TA, Thorat ND. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio 2025; 31:101613. [PMID: 40161926 PMCID: PMC11950786 DOI: 10.1016/j.mtbio.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in exosome isolation technologies are pivotal for transforming personalized medicine and enhancing clinical diagnostics. Exosomes, small extracellular vesicles with diameters ranging between 30 and 150 nm, are secreted into bodily fluids by a variety of cells and play essential roles in intercellular communication. These vesicles facilitate the transfer of nucleic acids, lipids, and proteins, affecting a wide range of biological and pathological processes. Given their importance in disease diagnostics, therapy, and as biomarkers, there has been a surge in developing methods to isolate them from fluids such as urine, saliva, blood, and cerebrospinal fluid. While traditional isolation techniques like ultracentrifugation and polymer-based precipitation have been foundational, recent technological advances have introduced more precise methods like microfluidics and immunoaffinity capture. These newer methods enable high-throughput and specific exosome isolation by targeting surface markers, thus enhancing purity. However, challenges such as balancing purity with yield and the lack of standardized protocols across different laboratories persist, impacting the consistency of findings. By integrating advanced isolation techniques and discussing their implications in diagnostics and therapy, this review aims to catalyze further research and adoption of exosome-based technologies in medicine, marking a significant stride towards tailored healthcare solutions.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Centre for Infectious Diseases & Microbiology, School of Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Hyderabad 500 055, Telangana, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology, West Bengal, Kolkata, 712102, India
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Department of Physics and Bernal Institute, University of Limerick, Castletroy, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| |
Collapse
|
4
|
Balakrishnan A, Winiarek G, Hołówka O, Godlewski J, Bronisz A. Unlocking the secrets of the immunopeptidome: MHC molecules, ncRNA peptides, and vesicles in immune response. Front Immunol 2025; 16:1540431. [PMID: 39944685 PMCID: PMC11814183 DOI: 10.3389/fimmu.2025.1540431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
The immunopeptidome, a diverse set of peptides presented by Major Histocompatibility Complex (MHC) molecules, is a critical component of immune recognition and response. This review article delves into the mechanisms of peptide presentation by MHC molecules, particularly emphasizing the roles of ncRNA-derived peptides and extracellular vesicles (EVs) in shaping the immunopeptidome landscape. We explore established and emerging insights into MHC molecule interactions with peptides, including the dynamics of peptide loading, transport, and the influence of cellular and genetic variations. The article highlights novel research on non-coding RNA (ncRNA)-derived peptides, which challenge conventional views of antigen processing and presentation and the role of EVs in transporting these peptides, thereby modulating immune responses at remote body sites. This novel research not only challenges conventional views but also opens up new avenues for understanding immune responses. Furthermore, we discuss the implications of these mechanisms in developing therapeutic strategies, particularly for cancer immunotherapy. By conducting a comprehensive analysis of current literature and advanced methodologies in immunopeptidomics, this review aims to deepen the understanding of the complex interplay between MHC peptide presentation and the immune system, offering new perspectives on potential diagnostic and therapeutic applications. Additionally, the interactions between ncRNA-derived peptides and EVs provide a mechanism for the enhanced surface presentation of these peptides and highlight a novel pathway for their systemic distribution, potentially altering immune surveillance and therapeutic landscapes.
Collapse
Affiliation(s)
- Arpita Balakrishnan
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Translational Medicine Doctoral School, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Gabriela Winiarek
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Hołówka
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Godlewski
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Wu W, Zhang B, Wang W, Bu Q, Li Y, Zhang P, Zeng L. Plant-Derived Exosome-Like Nanovesicles in Chronic Wound Healing. Int J Nanomedicine 2024; 19:11293-11303. [PMID: 39524918 PMCID: PMC11549884 DOI: 10.2147/ijn.s485441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of chronic wounds is steadily increasing each year, yet conventional treatments for chronic wounds yield unsatisfactory results. The delayed healing of chronic wounds significantly affects patient quality of life, placing a heavy burden on patients, their families, and the healthcare system. Therefore, there is an urgent need to find new treatment methods for chronic wounds. Plant-derived exosome-like nanovesicles (PELNs) may be able to accelerate chronic wound healing. PELNs possess advantages such as good accessibility (due in part to high isolation yields), low immunogenicity, and good stability. Currently, there are limited reports regarding the role of PELNs in chronic wound healing and their associated mechanisms, highlighting their novelty and the necessity for further research. This review aims to provide an overview of PELNs, discussing isolation methods, composition, and their mechanisms of action in chronic wound healing. Finally, we summarize future opportunities and challenges related to the use of PELNs for the treatment of chronic wounds, and offer some new insights and solutions.
Collapse
Affiliation(s)
- Weiquan Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Bing Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Weiqi Wang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Qiujin Bu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuange Li
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| |
Collapse
|
6
|
Marimpietri D, Corrias MV, Tripodi G, Gramignoli R, Airoldi I, Morandi F. Immunomodulatory properties of extracellular vesicles isolated from bone marrow of patients with neuroblastoma: role of PD-L1 and HLA-G. Front Immunol 2024; 15:1469771. [PMID: 39512342 PMCID: PMC11540764 DOI: 10.3389/fimmu.2024.1469771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) can be released by any cell and are crucial for cell-to-cell communications. EVs have been characterized in patients with solid and hematological tumors, where they play an important role in tumor progression and metastasis. EVs may express different surface proteins derived from the parental cells, including immunomodulatory molecules, such as HLA-G and PDL1. Methods We isolated EV from bone marrow (BM) samples of patients with Neuroblastoma (NB) and healthy controls and we analyzed the expression of CD56, GD2 and immune checkpoints on EV by flow cytometry. Next, we analyzed the function of T cells in vitro in the presence or absence of NB patients' BM-derived EV, in terms of proliferation and cytokine production. Finally, we analyzed the correlation between the expression of immune checkpoints on EV and the clinical outcome of patients. Results We found a higher expression of CD56 on EVs derived from BM of patients with NB than in those from healthy donors (HD). However, CD56 expression was not dependent on BM infiltration of NB cells. Moreover, the analysis of GD2 expression revealed that only a small fraction of EVs was released by infiltrating NB cells, whereas the majority may derive from BM-resident cells. BM-derived EVs from NB patients display a higher expression of HLA-G and PD-L1 than those derived from HD. Nonetheless, such EVs are able to modulate T cell immune responses. We measured a robust response, in vitro, towards a common bacterial antigen, including the release of GM-CSF and proinflammatory cytokines, like IFN-a and IL-6, from mononuclear cells. Some of these immunomodulatory features are dependent on the expression of HLA-G and PD-L1, whereas others may rely on other mechanism(s). Finally, a high expression of CD56, HLA-G and PD-L1 on BM-derived EVs may represent a good prognostic factor. Conclusions We described the presence of HLA-G and PDL1-bearing EVs in the BM of NB patients, which may represent a mechanism performed by resident BM cells to counteract the inflammation occurring in the BM microenvironment of NB patients.
Collapse
Affiliation(s)
- Danilo Marimpietri
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Valeria Corrias
- UOSD Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gino Tripodi
- UOC Servizio di Immunoematologia e Medicina Trasfusionale, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Gramignoli
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Irma Airoldi
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Morandi
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
7
|
Wang Y, Liang C, Liu X, Cheng SQ. A novel tumor-derived exosomal gene signature predicts prognosis in patients with pancreatic cancer. Transl Cancer Res 2024; 13:4324-4340. [PMID: 39262474 PMCID: PMC11384923 DOI: 10.21037/tcr-23-2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Pancreatic cancer is a devastating disease with poor prognosis. Accumulating evidence has shown that exosomes and their cargo have the potential to mediate the progression of pancreatic cancer and are promising non-invasive biomarkers for the early detection and prognosis of this malignancy. This study aimed to construct a gene signature from tumor-derived exosomes with high prognostic capacity for pancreatic cancer using bioinformatics analysis. Methods Gene expression data of solid pancreatic cancer tumors and blood-derived exosome tissues were downloaded from The Cancer Genome Atlas (TCGA) and ExoRBase 2.0. Overlapping differentially expressed genes (DEGs) in the two datasets were analyzed, followed by functional enrichment analysis, protein-protein interaction networks, and weighted gene co-expression network analysis (WGCNA). Using the least absolute shrinkage and selection operator (LASSO) regression of prognosis-related exosomal DEGs, a tumor-derived exosomal gene signature was constructed based on the TCGA dataset, which was validated by an external validation dataset, GSE62452. The prognostic power of this gene signature and its relationship with various pathways and immune cell infiltration were analyzed. Results A total of 166 overlapping DEGs were identified from the two datasets, which were markedly enriched in functions and pathways associated with the cell cycle. Two key modules and corresponding 70 exosomal DEGs were identified using WGCNA. Using LASSO Cox regression of prognosis-related exosomal DEGs, a tumor-derived exosomal gene signature was built using six exosomal DEGs (ARNTL2, FHL2, KRT19, MMP1, CDCA5, and KIF11), which showed high predictive performance for prognosis in both the training and validation datasets. In addition, this prognostic signature is associated with the differential activation of several pathways, such as the cell cycle, and the infiltration of some immune cells, such as Tregs and CD8+ T cells. Conclusions This study established a six-exosome gene signature that can accurately predict the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinbo Liu
- Department of Hepatopancreatobiliary Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
9
|
Guo K, Qu Z, Yu Y, Zou C. Identification of an 11-miRNA-regulated and surface-protein genes signature predicts the prognosis of lung adenocarcinoma based on multi-omics study. Am J Transl Res 2024; 16:1568-1586. [PMID: 38883394 PMCID: PMC11170602 DOI: 10.62347/cwmt4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and lethal cancers worldwide, signifying a critical need for improved prognostic tools. A growing number of studies have highlighted the role of microRNAs (miRNAs) and their regulatory functions in tumorigenesis and cancer progression. In this context, we performed an extensive analysis of bulk RNA- and miRNA-sequencing to identify LUAD-associated prognostic genes. A risk score system based on 11 miRNA-regulated and surface-protein genes was developed, which was later validated by internally and externally using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Further single-cell RNA sequencing analysis revealed significant interactions between various cellular subpopulations within the tumor microenvironment, with the most pronounced differences observed between endothelial and epithelial cells. The mutational analysis highlighted TP53 as a key signaling pathway associated with the risk score. The study underscores that immune suppression, indicated by a positive association with regulatory T cells (Tregs) and an inverse correlation with M1-type macrophages, is prevalent in high-risk LUAD patients. These findings provide a promising prognostic tool for clinical outcomes of LUAD patients, facilitating future development of therapeutic strategies and enhancing our understanding of the regulatory function of miRNAs in LUAD.
Collapse
Affiliation(s)
- Kunyu Guo
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Zhenbo Qu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Yibo Yu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University Harbin 150000, Heilongjiang, China
| |
Collapse
|
10
|
Sheikhhossein HH, Iommelli F, Di Pietro N, Curia MC, Piattelli A, Palumbo R, Roviello GN, De Rosa V. Exosome-like Systems: From Therapies to Vaccination for Cancer Treatment and Prevention-Exploring the State of the Art. Vaccines (Basel) 2024; 12:519. [PMID: 38793770 PMCID: PMC11125800 DOI: 10.3390/vaccines12050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer remains one of the main causes of death in the world due to its increasing incidence and treatment difficulties. Although significant progress has been made in this field, innovative approaches are needed to reduce tumor incidence, progression, and spread. In particular, the development of cancer vaccines is currently ongoing as both a preventive and therapeutic strategy. This concept is not new, but few vaccines have been approved in oncology. Antigen-based vaccination emerges as a promising strategy, leveraging specific tumor antigens to activate the immune system response. However, challenges persist in finding suitable delivery systems and antigen preparation methods. Exosomes (EXs) are highly heterogeneous bilayer vesicles that carry several molecule types in the extracellular space. The peculiarity is that they may be released from different cells and may be able to induce direct or indirect stimulation of the immune system. In particular, EX-based vaccines may cause an anti-tumor immune attack or produce memory cells recognizing cancer antigens and inhibiting disease development. This review delves into EX composition, biogenesis, and immune-modulating properties, exploring their role as a tool for prevention and therapy in solid tumors. Finally, we describe future research directions to optimize vaccine efficacy and realize the full potential of EX-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hamid Heydari Sheikhhossein
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|