1
|
Chen J, Fan Y, Cui S, Zhang H, Yu Z, Jiang Y, Zhou X. Decreased serum TIMP4 levels in patients with rheumatoid arthritis. Open Life Sci 2025; 20:20221037. [PMID: 40291774 PMCID: PMC12032977 DOI: 10.1515/biol-2022-1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025] Open
Abstract
The current study was designed to explore the clinical significance of serum tissue inhibitor of metalloproteinase 4 (TIMP4) levels in rheumatoid arthritis (RA). The GSE1919 chip was analyzed, differentially expressed genes (DEGs) were identified, and gene ontology as well as Kyoto Encyclopedia of Genes and Genomes analyses of the identified DEGs were conducted. Patients with RA (n = 96) and healthy individuals (n = 96) were enrolled in this study. Serum from the participants was collected, and RT-qPCR as well as WB have been conducted to examine TIMP4 levels; additionally, interleukin (IL)-6 and IL-1β levels were determined using the ELISA method. Pearson's correlation analysis was conducted for evaluating relationships between the expression levels of TIMP4 and those of IL-6 or IL-1β. A receiver operating characteristic (ROC) curve was drawn to determine the potential diagnostic value of serum TIMP4 for RA. TIMP4 was identified as a markedly downregulated gene involved in RA development. TIMP4 levels were significantly decreased in patients with RA, and the results of the ROC analysis showed that TIMP4 may be a potential diagnostic marker. Furthermore, the concentrations of IL-6 and IL-1β were markedly elevated in patients with RA. Finally, TIMP4 levels showed negative correlation with the levels of either IL-6 or IL-1β. TIMP4 is downregulated in RA and is a reliable serum marker for RA diagnosis.
Collapse
Affiliation(s)
- Jinyu Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University,
No. 666, Shengli Road, Nantong, 226001, China
| | - Yanyan Fan
- Department of Orthopedics, Ili & Jiangsu Joint Institute of Health, Ili835100, China
- Department of Orthopedics, Nantong Hospital to Nanjing University of Chinese Medicine,
Nantong, 226001, China
| | - Shengyu Cui
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University,
No. 666, Shengli Road, Nantong, 226001, China
| | - Haiping Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University,
No. 666, Shengli Road, Nantong, 226001, China
| | - Ziliang Yu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University,
No. 666, Shengli Road, Nantong, 226001, China
| | - Yali Jiang
- Department of Orthopedics, Ili & Jiangsu Joint Institute of Health, Ili835100, China
- Depatement of Orthopedics, The Friendship Hospital of Ili Kazakh Autonomous Prefecture,
Yining, 835000, China
| | - Xiaogang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University,
No. 666, Shengli Road, Nantong, 226001, China
| |
Collapse
|
2
|
Huang ST, Chen ZM, Peng Z, Wang Y, Yang F, Tang Y, Li Z, Wan L. NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice. Front Immunol 2025; 15:1450887. [PMID: 39867900 PMCID: PMC11758165 DOI: 10.3389/fimmu.2024.1450887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear. Methods Widetype (WT) and Nlrp3 deletion (Nlrp3-/- )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch. Quantitative real-time PCR, western blotting, immunohistochemistry staining, immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA) was used to examine the expression of NLRP3 inflammasome, type 2 immunity and receptors in dorsal root ganglion (DRG) neurons related with chronic itch. Flow cytometry was performed to quantify the frequency of type 2 immune cells. Results This study revealed that the NLRP3 inflammasome was activated in the skin of DNFB-induced chronic itch mice. Surprisingly, the absence of Nlrp3 exacerbated itch behavior. In Nlrp3-/- mice, IL-18 expression was downregulated, whereas markers of type 2 immunity, such as IL-4 and thymic stromal lymphopoietin (TSLP), were significantly upregulated in the skin. Furthermore, TRPA1 and its colocalization with the IL-4 receptor were increased in the DRG. Inhibition of TRPA1 or administration of recombinant IL-18 significantly reduced DNFB-induced itch behavior in Nlrp3-/- mice. Recombinant IL-18 also decreased the expression of TRPA1, IL-4, and TSLP. Discussion These findings suggested that the absence of Nlrp3 aggravated DNFB-induced chronic itch by exacerbating type 2 immunity in the skin and enhancing the IL-4/TSLP-TRPA1 axis, potentially driven by reduced IL-18 levels.
Collapse
Affiliation(s)
- Si-Ting Huang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zuo-Ming Chen
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhe Peng
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Wang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Tang
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Wan
- Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Stem Cell Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wang N, Li W, Ouyang G, Li H, Yang J, Wu G. Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response. Int J Mol Sci 2025; 26:429. [PMID: 39796282 PMCID: PMC11721051 DOI: 10.3390/ijms26010429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver. In this study, we generated a FLHS laying hen model by feeding hens a high-energy, low-protein diet, with goose deoxycholic acid (CDCA) given as an intervention. HE staining, fluorescence quantitative PCR, and ELISA were used to evaluate the effects of CDCA on pathological changes and inflammatory responses in the liver. The results showed that hepatic hemorrhage in FLHS laying hens was reduced after CDCA treatment. Furthermore, fat vacuoles and transaminase levels decreased significantly. In addition, expression levels of M1-type macrophage markers and polarization products were significantly reduced, and the expression of pro-inflammatory regulatory factors related to the JAK-STAT signaling pathway, LPS-TLR4-Myd88-NF-kB signaling pathway, and NLRP3 inflammasomes decreased significantly as well. Expression levels of M2-type macrophage markers and polarization products increased significantly, as did the expression of anti-inflammatory regulators related to the JAK-STAT signaling pathway. These results suggest that CDCA ameliorates liver injury in laying hens with FLHS by inhibiting macrophage M1-type polarization and the resulting pro-inflammatory response, thereby promoting M2-type macrophage polarization and an anti-inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (N.W.)
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (N.W.)
| |
Collapse
|
4
|
Zhu Z, Feng YD, Zou YL, Xiao YH, Wu JJ, Yang YR, Jiang XX, Wang L, Xu W. Integrating serum pharmacochemistry, network pharmacology and untargeted metabolomics strategies to reveal the material basis and mechanism of action of Feining keli in the treatment of chronic bronchitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118643. [PMID: 39089660 DOI: 10.1016/j.jep.2024.118643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Feining keli (FNKL) is herbal preparation mainly made from Senecio cannabifolius Less., In recent years, more and more studies have found that FNKL has excellent therapeutic effects on chronic bronchitis (CB). Nevertheless, its pharmacodynamic material basis and mechanism of action are still unknown. AIM OF THE STUDY This study aimed to explore the pharmacodynamic material basis and mechanism of action of FNKL in treating CB. MATERIALS AND METHODS The CB rat model was induced using nasal drops of lipopolysaccharide (LPS) in combination with smoking. Various assessments including behavioral and body mass examination, lung index measurement, enzyme linked immunosorbent assay (ELISA), as well as histological analyses using hematoxylin and eosin (H&E) and Masson staining were conducted to validate the reliability of the CB model. The serum components of FNKL in CB rats were identified using ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer (UHPLC-OE-MS). Network pharmacology was used to predict the network of action of the active ingredients in FNKL based on these serum components. Signaling pathways were enriched and analyzed, and molecular docking was conducted for key targets. Molecular dynamics simulations were performed using GROMACS software. The mechanism was confirmed through a series of experiments including Western blot (WB), immunofluorescence (IF), and reverse transcription (RT)-PCR. Additionally, untargeted metabolomics was employed to identify biomarkers and relevant metabolic pathways associated with the treatment of CB with FNKL. RESULTS In CB rats, FNKL improved body mass, lung index, and pathological damage of lung tissues. It also decreased interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), malonaldehyde (MDA) levels, and percentage of lung collagen fiber area. Furthermore, FNKL increased IL-10 and superoxide dismutase (SOD) levels, which helped alleviate bronchial inflammation in the lungs. A total of 70 FNKL chemical components were identified in CB rat serum. Through network pharmacology analysis, 5 targets, such as PI3K, AKT, NF-κB, HIF-1α, and MYD88, were identified as key targets of FNKL in the treatment of CB. Additionally, the key signaling pathways identified were PI3K/AKT pathway、NF-κB/MyD88 pathway、HIF-1α pathway. WB, IF, and RT-PCR experiments were conducted to confirm the findings. Molecular docking studies demonstrated successful docking of 16 potential active components with 5 key targets. Additionally, molecular dynamics simulations indicated the stability of quercetin-3-galactoside and HIF-1α. Metabolomics analysis revealed that FNKL primarily regulated pathways related to alpha-linolenic acid metabolism, primary bile acid biosynthesis, bile secretion, arachidonic acid metabolism, neuroactive ligand-receptor interaction, and folate biosynthesis. Furthermore, the expression levels of traumatic acid, traumatin, alpha linolenic acid, cholic acid, 2-arachidonoylglycerol, deoxycholic acid, 7,8-dihydroneopterin, and other metabolites were found to be regulated. CONCLUSION FNKL exhibits positive therapeutic effects on CB, with quercetin-3-galactoside identified as a key active component. The mechanism of FNKL's therapeutic action on CB involves reducing inflammatory response, oxidative stress, and regulating metabolism, and its molecular mechanism was better elucidated in a holistic manner. This study serves as a reference for understanding the pharmacodynamic material basis and mechanism of action of FNKL in treating CB, and provides avenues for exploring the effects of compounded herbal medicines on CB.
Collapse
Affiliation(s)
- Zhu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ya-Dong Feng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yun-Lu Zou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ying-Hao Xiao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jia-Jun Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yong-Run Yang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiao-Xue Jiang
- Jilin Yimintang Pharmaceutical Co., Ltd, Siping, 136000, China
| | - Lin Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wei Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
5
|
Shijing T, Yinping P, Qiong Y, Deshuai L, Liancai Z, Jun T, Shaoyong L, Bochu W. Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute. Microb Cell Fact 2024; 23:326. [PMID: 39623449 PMCID: PMC11613824 DOI: 10.1186/s12934-024-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste. Current technology has facilitated the industrial production of TUDCA from Tauodeoxycholic acid (TCDCA) using chicken bile powder. The review begins by examining the chemical composition, structure, and properties of bear bile, followed by an outline of the pharmacological mechanisms and manufacturing methods of TUDCA, covering chemical synthesis and biotransformation methods, and a discussion on their respective advantages and disadvantages. Finally, the process of converting chicken bile powder into bear bile powder using an immobilized 7α-Hydroxysteroid Dehydrogenases(7α-HSDH) with 7β- Hydroxysteroid Dehydrogenases (7β-HSDH) dual-enzyme system is thoroughly explained. The main objective of this review is to propose a comprehensive strategy for the complete synthesis of artificial bear bile from chicken bile within a controlled laboratory setting.
Collapse
Affiliation(s)
- Tang Shijing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Pan Yinping
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Yang Qiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhu Liancai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Liu Shaoyong
- Shanghai Kaibao Pharmaceutical Co., LTD., Shanghai, 200030, People's Republic of China
| | - Wang Bochu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
6
|
Wang Z, Luo W, Wang Q, Liu C, Gong Y, Li B, Zeng X, Lin J, Su Z, Li X, Yu Y, Liu Z, Gao L, Liao L. hUCMSCs Regulate Bile Acid Metabolism to Prevent Heart Failure–Induced Intestinal Injury by Inhibiting the Activation of the STAT3/NF‐κB/MAPK Signaling Pathway via TGR5. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
ABSTRACTThe protective effects of human umbilical cord mesenchymal stem cells (hUCMSCs) on heart failure (HF)‐induced intestinal injury have not been fully understood. Flow cytometry and immunofluorescence analysis revealed that hUCMSCs renewed themselves, grew, and transformed into various cell types. Meanwhile, hUCMSCs safeguarded against intestinal damage, regulated imbalances in the intestinal flora and bile acid metabolism, and enhanced the levels of hyodeoxycholic acid (HDCA) in pigs with HF. HDCA protected against HF‐induced intestinal injury in mice through Takeda G protein–coupled receptor 5 (TGR5). Protein analysis showed that HDCA exerted protective effects on the intestines via the signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa B (NF‐κB)/mitogen‐activated protein kinase (MAPK) signaling pathway. Mouse experiments revealed that HDCA bound to TGR5 to inhibit MAPK and NF‐κB signaling pathway activation, which relies on the STAT3 signaling pathway. Moreover, hUCMSCs protected against intestinal injury in the pig model of HF by suppressing the activation of the STAT3/NF‐κB/MAPK signaling pathway via TGR5.
Collapse
Affiliation(s)
- Zetian Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Wei Luo
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine Tongji University Shanghai China
| | - Qing Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Chunzheng Liu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yanshan Gong
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Baitian Li
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xuejiao Zeng
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Jiaqi Lin
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Zehua Su
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xin Li
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yongze Yu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Zhongmin Liu
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Research Institute of Heart Failure, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital Tongji University Shanghai China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital Tongji University School of Medicine Shanghai China
| |
Collapse
|
7
|
Zhang P, Wang H, Liang M, Wang Z, Liu C, Han Y. A candidate reference measurement procedure for quantification of glycocholic acid in human serum based on isotope dilution liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2024; 416:5121-5131. [PMID: 39046504 PMCID: PMC11377629 DOI: 10.1007/s00216-024-05449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/08/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024]
Abstract
Accurate measurement of serum glycocholic acid (GCA) is crucial for evaluating the activity of chronic hepatitis. Moreover, GCA is a novel identified biomarker for hepatocellular carcinoma. Although some laboratories have used the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to measure GCA in recent years, the problem of potential interference of GCA analogues has not been solved well yet. Neither reference measurement procedures nor reference materials for GCA have been listed in the Joint Committee for Traceability in Laboratory Medicine (JCTLM) database. For standardization of GCA, it is urgent to establish a candidate measurement procedure for GCA. In this study, a candidate reference measurement procedure for the quantification of GCA in human serum based on isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) by a two-step sample pretreatment of protein precipitation and MAX solid-phase extraction was developed and validated. GCA can be completely separated from its structural analogues with gradient elution in 9 min compared with short time gradients published in previous literature by Huang's group. Method validation indicated perfect quantitation precision with intra-day and inter-day values that were ≤1.30% and ≤1.80%, respectively. The method showed excellent linearity with high regression coefficients (R2 > 0.999) over a range of 0.92 ng/g-38.38 μg/g and perfect recoveries at three spiked levels (99.87-100.43%). No interference, matrix effect, and carryover were observed. Moreover, the cRMP was successfully applied to measure GCA in serum samples and compared with two immunoassays in a clinical laboratory. As a candidate reference method, this method can promote a GCA standardization program.
Collapse
Affiliation(s)
- Pingping Zhang
- Reference Laboratory, Autobio Diagnostics Co., Ltd, Zhengzhou, 450016, Henan, China
| | - Huimin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Man Liang
- Reference Laboratory, Autobio Diagnostics Co., Ltd, Zhengzhou, 450016, Henan, China
| | - Zhifang Wang
- Reference Laboratory, Autobio Diagnostics Co., Ltd, Zhengzhou, 450016, Henan, China
| | - Chunlong Liu
- Reference Laboratory, Autobio Diagnostics Co., Ltd, Zhengzhou, 450016, Henan, China
| | - Yanlin Han
- Reference Laboratory, Autobio Diagnostics Co., Ltd, Zhengzhou, 450016, Henan, China.
| |
Collapse
|
8
|
Burton C, Bitaraf A, Snyder K, Zhang C, Yoder SJ, Avram D, Du D, Yu X, Lau EK. The functional role of L-fucose on dendritic cell function and polarization. Front Immunol 2024; 15:1353570. [PMID: 38646527 PMCID: PMC11026564 DOI: 10.3389/fimmu.2024.1353570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2024] Open
Abstract
Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.
Collapse
Affiliation(s)
- Chase Burton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Amirreza Bitaraf
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kara Snyder
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Sean J. Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eric K. Lau
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
9
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|