1
|
Cini JK, Kenney RT, Dexter S, McAndrew SJ, Eraslan RN, Brody R, Rezac DJ, Boohaker R, Lapi SE, Mohan P. SON-1010: an albumin-binding IL-12 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2024; 15:1493257. [PMID: 39697343 PMCID: PMC11652653 DOI: 10.3389/fimmu.2024.1493257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Cytokines have been promising cancer immunotherapeutics for decades, yet only two are licensed to date. Interleukin-12 (IL-12) is a potent regulator of cell-mediated immunity that activates NK cells and interferon-γ (IFNγ) production. It plays a central role in multiple pathways that can enhance cancer cell death and modify the tumor microenvironment (TME). Attempts to dose rIL-12 were initially successful but IFNγ toxicity in Phase 2 complicated further development in the late 1990s. Since then, better dosing strategies have been developed, but none have achieved the level of cancer control seen in preclinical models. We set out to develop a novel strategy to deliver fully functional IL-12 and other biologics to the TME by binding albumin, taking advantage of its ability to be concentrated and retained in the tumor. Methods Single-chain variable fragments (scFv) were identified from a human phage display library that bound human, mouse, and cynomolgus macaque serum albumin, both at physiologic and acidic conditions. These were taken through a series of steps to identify strongly binding molecules that don't interfere with the normal physiology of albumin to bind FcRn, giving it prolonged half-life in serum, along with SPARC/GP60, which allows albumin to target the TME. A final molecule was chosen and a single mutation was made that minimizes the potential for immunogenicity. This fully human albumin-binding (FHAB®) domain was characterized and manufacturing processes were developed to bring the first drug candidate into the clinic. Results Once identified, the murine form of mIL12-FHAB was studied preclinically to understand its mechanism of action and biodistribution. It was found to be much more efficient at blocking tumor growth compared to murine IL-12, while stimulating significant IFNγ production with minimal toxicity. SON-1010, which uses the human IL-12 sequence, passed through all of the characterization and required toxicology and is currently being studied in the clinic. Conclusions We identified and developed a platform technology with prolonged half-life that can target IL-12 and other immune modulators to the TME. Safety and efficacy are being studied using SON-1010 as monotherapy and in combination with checkpoint blockade strategies.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Suzanne E. Lapi
- Radiology, Chemistry, and Biomedical Engineering, University of Alabama, Birmingham, AL, United States
| | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
2
|
Hangasky JA, Fernández RDV, Stellas D, Hails G, Karaliota S, Ashley GW, Felber BK, Pavlakis GN, Santi DV. Leveraging long-acting IL-15 agonists for intratumoral delivery and enhanced antimetastatic activity. Front Immunol 2024; 15:1458145. [PMID: 39559362 PMCID: PMC11570272 DOI: 10.3389/fimmu.2024.1458145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction IL-15 agonists hold promise as immunotherapeutics due to their ability to induce the proliferation and expansion of cytotoxic immune cells including natural killer (NK) and CD8+ T cells. However, they generally have short half-lives that necessitate frequent administration to achieve efficacy. To address this limitation, we have developed a half-life extension technology using hydrogel microspheres (MS). Here, the therapeutic is tethered to MSs by a releasable linker with pre-programed cleavage rates. We previously showed the MS conjugate of single-chain IL-15, MS~IL-15, effectively increased the half-life of IL-15 to approximately 1 week and enhanced the pharmacodynamics. We sought to determine whether the same would be true with a MS conjugate of the IL-15 agonist, receptor-linker IL-15 (RLI). Methods We prepared a long acting MS conjugate of RLI, MS~RLI. The pharmacokinetics and pharmacodynamics of MS~RLI were measured in C57BL/6J mice and compared to MS~IL-15. The antitumor efficacy of MS~RLI was measured when delivered subcutaneously or intratumorally in the CT26 tumor model and intratumorally in the orthotopic EO771 tumor model. Results MS~RLI exhibited a half-life of 30 h, longer than most IL-15 agonists but shorter than MS~IL-15. The shorter than expected half-life of MS~RLI was shown to be due to target-mediated-disposition caused by an IL-15 induced cytokine sink. MS~RLI resulted in very potent stimulation of NK and CD44hiCD8+ T cells, but also caused significant injection-site toxicity that may preclude subcutaneous administration. We thus pivoted our efforts toward studying the MS~RLI for long-acting intra-tumoral therapy, where some degree of necrosis might be beneficial. When delivered intra- tumorally, both MS~IL-15 and MS~RLI had modest anti-tumor efficacy, but high anti- metastatic activity. Conclusion Intra-tumoral MS~RLI and MS~RLI combined with systemic treatment with other agents could provide beneficial antitumor and anti-metastatic effects without the toxic effects of systemic IL-15 agonists. Our findings demonstrate that intra-tumorally administered long-acting IL-15 agonists counter two criticisms of loco-regional therapy: the necessity for frequent injections and the challenge of managing metastases.
Collapse
Affiliation(s)
| | | | - Dimitris Stellas
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | | | - Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | | | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | | |
Collapse
|
3
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
4
|
Kenney RT, Cini JK, Dexter S, DaFonseca M, Bingham J, Kuan I, Chawla SP, Polasek TM, Lickliter J, Ryan PJ. A phase I trial of SON-1010, a tumor-targeted, interleukin-12-linked, albumin-binding cytokine, shows favorable pharmacokinetics, pharmacodynamics, and safety in healthy volunteers. Front Immunol 2024; 15:1362775. [PMID: 38487528 PMCID: PMC10937388 DOI: 10.3389/fimmu.2024.1362775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Background The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted. Methods SB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101. Results Participants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines. Conclusion SON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients. Clinical trial registration https://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572.
Collapse
Affiliation(s)
| | - John K. Cini
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | | | | | | | - Sant P. Chawla
- Sarcoma Oncology Center, Santa Monica, CA, United States
| | - Thomas M. Polasek
- Centre for Medicine Use and Safety, Monash University, Melbourne, VIC, Australia
- InClin, Inc, San Mateo, CA, United States
| | | | | |
Collapse
|