1
|
Miluzio A, De Grossi F, Mancino M, Biffo S, Manfrini N. FAM46C Expression Sensitizes Multiple Myeloma Cells to PF-543-Induced Cytotoxicity. Biomolecules 2025; 15:623. [PMID: 40427516 PMCID: PMC12109155 DOI: 10.3390/biom15050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
FAM46C is a tumor suppressor initially identified in multiple myeloma (MM) but increasingly recognized for its role also in other cancers. Despite its significance, studies exploring the therapeutic potential of FAM46C in combination with targeted treatments remain limited. Sphingosine kinases (SphK1 and SphK2) are key regulators of sphingolipid signaling, a pathway essential for maintaining cell structure and function but frequently deregulated in tumors, making them promising targets for cancer therapy. Preliminary work from our laboratory showed that FAM46C expression synergizes with administration of SKI-I, a pan-inhibitor of sphingosine kinases. In this study, we focused specifically on SphK1, the sphingosine kinase predominantly implicated in cancer and investigated the combinatorial effect of forced FAM46C expression and treatment with PF-543, a selective SphK1 inhibitor. We found that FAM46C overexpression enhances, whereas its downregulation reduces, the cytotoxic efficacy of PF-543 in MM cell lines. Using an in vivo xenograft model, we further validated these findings, showing that FAM46C-expressing MM tumors are indeed sensitive to PF-543 while tumors harboring the D90G loss-of-function variant of FAM46C are not. Overall, our results uncover a novel synergistic interaction between FAM46C expression and SphK1 inhibition, highlighting a promising therapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Annarita Miluzio
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Marilena Mancino
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Stefano Biffo
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Jordan MA, Morschl J, Autenrieth SE. Dendritic cells in multiple myeloma: from immune evasion to therapeutic potential. Front Immunol 2025; 16:1575509. [PMID: 40313957 PMCID: PMC12043573 DOI: 10.3389/fimmu.2025.1575509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Multiple myeloma (MM) is a type of hematologic cancer characterized by the uncontrolled clonal expansion of plasma cells in the bone marrow (BM). This leads to significant dysfunction and suppression of the immune system in affected patients. Myeloma cells employ sophisticated strategies to manipulate immune and non-immune cells, evading immune surveillance and enhancing their survival. One key factor in this evasion is the disruption of dendritic cell (DC)-mediated immune mechanisms. Extensive evidence indicates that in the presence of myeloma cells, DC numbers are notably reduced, and their phenotype and function are altered, impairing their ability to present antigens and activate robust T-cell responses effectively. Despite rapid advances in MM treatment, with promising strategies such as DC-based vaccines being already achieved, DC dysfunction remains a substantial hurdle, associated with or contributing to poor therapeutic outcomes, disease relapse, and MM's persistence as an incurable disease. To address these challenges, it is essential to understand the intricate mechanisms through which myeloma cells transform DCs into their "accomplices," undermining immune responses. This review comprehensively summarizes the current understanding of the role of DCs in MM. Additionally, it evaluates the potential of DCs in anti-MM immunotherapy, discussing persistent challenges and highlighting emerging perspectives that may lead to promising breakthroughs for improved patient outcomes.
Collapse
|
3
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
4
|
Forró B, Kajtár B, Lacza Á, Kereskai L, Vida L, Kőszegi B, Urbán P, Kun J, Gyenesei A, Kosztolányi S, Kehl D, Jáksó P. Multiparameter flow cytometric and transcriptional analyis of CD20 positive T-cells in bone marrow in patients of multiple myeloma and monoclonal gammopathy of undetermined significance. Front Immunol 2025; 16:1464940. [PMID: 40079005 PMCID: PMC11896981 DOI: 10.3389/fimmu.2025.1464940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction CD20+ T-cells were described firstly in peripheral blood and later in bone marrow in patients with hematological tumors, and certain immune-mediated diseases. During our hematological diagnostic work, this peculiar subgroup of lymphocytes has been consistently observed associated with untreated monoclonal gammopathy of undetermined significance (MGUS) and myeloma (MM). Despite the expanding literature data, the exact function of CD20+ T cells remains unclear. Methods We investigated the incidence of CD20+ T-cells in MGUS (n=27), and MM using a larger cohort (n=125) and compared it with control bone marrow samples (n=39). We examined their presence before and after treatment in 32 cases with flow cytometry. Comprehensive flow cytometric analysis included the examination of functional (T-cell activation, cytotoxic molecules and T-cell exhaustion) and maturation markers in a large number of cases. In addition RNA sequencing and subsequent bioinformatics analyses were carried out to detect differentially expressed (DE) genes of FACS sorted CD20+ T-cells versus CD20- T-cells. Results and discussion We found that CD20+ T-cells are phenotypically and transcriptionally different from CD20- T-cells. Elevated incidence of CD20+ T-cells in MGUS and MM and the expression of CD8, NKG2D, and CD28 suggests anti-tumor functionality. Increased PD-1 expression indicates T-cell exhaustion which was mostly detected in the samples of patients with a higher tumor percentage. The majority of CD20+ T-cells are effector or effector memory T-cells. Some of the differentially expressed genes suggest antitumor function via regulating T-cell activation pathways, while other genes involved in tumor escape from immune surveillance by suppressing T-cells or by reprogramming T-cells toward T-cell exhaustion. Our findings suggest that CD20+ T-cells may play a vital role both in immune surveillance and immune escape contributing to progression of multiple myeloma.
Collapse
Affiliation(s)
- Barbara Forró
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Ágnes Lacza
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Livia Vida
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Balázs Kőszegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Péter Urbán
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - József Kun
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Attila Gyenesei
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - Szabolcs Kosztolányi
- 1st Department of Internal Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Dániel Kehl
- Faculty of Business and Economics, University of Pécs, Pécs, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| |
Collapse
|
5
|
Li S, Liu J, Peyton M, Lazaro O, McCabe SD, Huang X, Liu Y, Shi Z, Zhang Z, Walker BA, Johnson TS. Multiple Myeloma Insights from Single-Cell Analysis: Clonal Evolution, the Microenvironment, Therapy Evasion, and Clinical Implications. Cancers (Basel) 2025; 17:653. [PMID: 40002248 PMCID: PMC11852428 DOI: 10.3390/cancers17040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Multiple myeloma (MM) is a complex and heterogeneous hematologic malignancy characterized by clonal evolution, genetic instability, and interactions with a supportive tumor microenvironment. These factors contribute to treatment resistance, disease progression, and significant variability in clinical outcomes among patients. This review explores the mechanisms underlying MM progression, including the genetic and epigenetic changes that drive clonal evolution, the role of the bone marrow microenvironment in supporting tumor growth and immune evasion, and the impact of genomic instability. We highlight the critical insights gained from single-cell technologies, such as single-cell transcriptomics, genomics, and multiomics, which have enabled a detailed understanding of MM heterogeneity at the cellular level, facilitating the identification of rare cell populations and mechanisms of drug resistance. Despite the promise of advanced technologies, MM remains an incurable disease and challenges remain in their clinical application, including high costs, data complexity, and the need for standardized bioinformatics and ethical considerations. This review emphasizes the importance of continued research and collaboration to address these challenges, ultimately aiming to enhance personalized treatment strategies and improve patient outcomes in MM.
Collapse
Affiliation(s)
- Sihong Li
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jiahui Liu
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Madeline Peyton
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Regenstrief Institute, Indianapolis, IN 46202, USA
| | - Olivia Lazaro
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
| | - Sean D. McCabe
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Xiaoqing Huang
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| | - Zanyu Shi
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| | - Zhiqi Zhang
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Brian A. Walker
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| | - Travis S. Johnson
- Indiana Bioscience Research Institute, Indianapolis, IN 46202, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Cholujova D, Bujnakova ZL, Dutkova E, Valuskova Z, Csicsatkova N, Suroviakova K, Marinkovicova ME, Zbellova L, Koklesova L, Sedlak J, Hideshima T, Anderson KC, Jakubikova J. Exploring the anti-myeloma potential of composite nanoparticles As 4S 4/Fe 3O 4: Insights from in vitro, ex vivo and in vivo studies. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102777. [PMID: 39111377 DOI: 10.1016/j.nano.2024.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
Given the profound multiple myeloma (MM) heterogeneity in clonal proliferation of malignant plasma cells (PCs) and anti-MM therapeutic potential of nanotherapies, it is inevitable to develop treatment plan for patients with MM. Two composite nanoparticles (NPs), As4S4/Fe3O4 (4:1) and As4S4/Fe3O4 (1:1) demonstrated effective anti-MM activity in in vitro, ex vivo, and in vivo in xenograft mouse model. Composite NPs triggered activation of p-ERK1/2/p-JNK, and downregulation of c-Myc, p-PI3K, p-4E-BP1; G2/M cell cycle arrest with increase in cyclin B1, histones H2AX/H3, activation of p-ATR, p-Chk1/p-Chk2, p-H2AX/p-H3; and caspase- and mitochondria-dependent apoptosis induction. NPs attenuated the stem cell-like side population in MM cells, both alone and in the presence of stroma. For a higher clinical response rate, As4S4/Fe3O4 (4:1) observed synergism with dexamethasone and melphalan, while As4S4/Fe3O4 (1:1) showed synergistic effects in combination with bortezomib, lenalidomide and pomalidomide anti-MM agents, providing the framework for further clinical evaluation of composite NPs in MM.
Collapse
Affiliation(s)
- Danka Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Zdenka Lukacova Bujnakova
- Institute of Geotechnics, Department of Mechanochemistry, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Erika Dutkova
- Institute of Geotechnics, Department of Mechanochemistry, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Zuzana Valuskova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Nikoleta Csicsatkova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Katarina Suroviakova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Maria Elisabeth Marinkovicova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Linda Zbellova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Koklesova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Sedlak
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Teru Hideshima
- Dana Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth C Anderson
- Dana Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia.
| |
Collapse
|
8
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
9
|
Sarafraznia L, Tahan Nejad Asadi Z, Dayer D, Jalalifar MA, Ghanatir N. Investigation of Non-Coding RNA-Related Autophagy Alterations in Drug-Resistant Multiple Myeloma Plasma Cells. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:422-430. [PMID: 40034935 PMCID: PMC11872035 DOI: 10.30699/ijp.2024.2022061.3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/14/2024] [Indexed: 03/05/2025]
Abstract
Background & Objective Multiple myeloma (MM) drug resistance is thought to be caused by the development of protective autophagy. This work aimed to assess the non-coding RNA (ncRNA) autophagy-related alterations in drug-resistant (DR) myeloma cells. Methods DR Plasma cells were extracted from the bone marrow of DR patients referred to Baghai 2 Hospital in Ahvaz, Iran. The cells were grown in RPMI-1640 media containing 10% FBS and 1% Pen/Strep and incubated at 37˚C and 5% CO2. After six passages, the plasma cells were precisely isolated and utilized as DR cells. The U266B1 cell line (IBRC C10148) was grown in the RPMI-1640 media containing 10% FBS and 1% Pen/Strep and utilized as drug-sensitive (DS) cells. The relative expression of the genes was determined using the Real-time PCR method. Statistical analysis of the data was performed using GraphPad Prism 8 software. Results When the DR cells were compared to the DS cells, there was a notable increase in the expression of ULK1 and LC3B. However, expression of P62 in the DR plasma cells showed a significant decrease compared to the DS plasma cells. The miR-1297 level was considerably higher in the DR cells than in the DS cells. Although, there was no statistically significant difference in the expression of miR-26a-5p between the DS and DR cells. The DR cells exhibited a statistically significant increase in the expression of MALAT1 and SNHG6. Conclusion Drug resistance in MM cells may result from overexpression of non-coding RNAs involved in autophagy.
Collapse
Affiliation(s)
- Leila Sarafraznia
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zari Tahan Nejad Asadi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Jalalifar
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nariman Ghanatir
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Song Y, Zhang H, Geng J, Chen H, Bo Y, Lu X. Clotrimazole inhibits growth of multiple myeloma cells in vitro via G0/G1 arrest and mitochondrial apoptosis. Sci Rep 2024; 14:15406. [PMID: 38965397 PMCID: PMC11224322 DOI: 10.1038/s41598-024-66367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Patients with multiple myeloma (MM) experience relapse and drug resistance; therefore, novel treatments are essential. Clotrimazole (CTZ) is a wide-spectrum antifungal drug with antitumor activity. However, CTZ's effects on MM are unclear. We investigated CTZ's effect on MM cell proliferation and apoptosis induction mechanisms. CTZ's effects on MM.1S, NCI- H929, KMS-11, and U266 cell growth were investigated using Cell Counting Kit-8 (CCK-8) assay. The apoptotic cell percentage was quantified with annexin V-fluorescein isothiocyanate/7-amino actinomycin D staining. Mitochondrial membrane potential (MMP) and cell cycle progression were evaluated. Reactive oxygen species (ROS) levels were measured via fluorescence microscopy. Expression of apoptosis-related and nuclear factor (NF)-κB signaling proteins was analyzed using western blotting. The CCK-8 assay indicated that CTZ inhibited cell proliferation based on both dose and exposure time. Flow cytometry revealed that CTZ decreased apoptosis and MMP and induced G0/G1 arrest. Immunofluorescence demonstrated that CTZ dose-dependently elevated in both total and mitochondrial ROS production. Western blotting showed that CTZ enhanced Bax and cleaved poly ADP-ribose polymerase and caspase-3 while decreasing Bcl-2, p-p65, and p-IκBα. Therefore, CTZ inhibits MM cell proliferation by promoting ROS-mediated mitochondrial apoptosis, inducing G0/G1 arrest, inhibiting the NF-κB pathway, and has the potential for treating MM.
Collapse
Affiliation(s)
- Yang Song
- Chinese People's Liberation Army Medical School, Beijing, 100853, China
| | - Hui Zhang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Jie Geng
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Haoran Chen
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Yang Bo
- Department of Hematology, Second Medical Center, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Xuechun Lu
- Department of Hematology, Second Medical Center, People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|