1
|
Sokolov NA, Boots M, Bartlett LJ. Avoiding the tragedies of parasite tolerance in Darwinian beekeeping. Proc Biol Sci 2025; 292:20242433. [PMID: 39904384 PMCID: PMC11793967 DOI: 10.1098/rspb.2024.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Bee declines have been partly attributed to the impacts of invasive or emerging parasite outbreaks. For western honeybees, Apis mellifera, major losses are associated with the virus-vectoring mite, Varroa destructor. In response, beekeepers have focused breeding efforts aimed at conferring resistance to this key parasite. One method of many is survival-based beekeeping where colonies that survive despite significant Varroa infestations produce subsequent colonies. We argue that this 'hands-off' approach will not always lead to Varroa resistance evolving but rather tolerance. Tolerance minimizes host fitness costs of parasitism without reducing parasite abundance, whereas resistance either prevents parasitism outright or keeps parasitism intensity low. With clear epidemiological distinctions, and as honeybee disease dynamics impact other wild bees owing to shared pathogens, we discuss why tolerance outcomes in honeybee breeding have important implications for wider pollinator health. Crucially, we argue that unintentional selection for tolerance will not only lead to more spillover from honeybees but may also select for pathogens that are more virulent in wild bees leading to 'tragedies of tolerance'. These tragedies can be avoided through successful breeding regimes that specifically select for low Varroa. We emphasize how insights from evolutionary ecology can be applied in ecologically responsible honeybee management.
Collapse
Affiliation(s)
- Nina A. Sokolov
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720, USA
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Lewis J. Bartlett
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
2
|
McAfee A, Alavi-Shoushtari N, Labuschagne R, Tran L, Common J, Higo H, Pernal SF, Giovenazzo P, Hoover SE, Guzman-Novoa E, Currie RW, Veiga PW, French SK, Conflitti IM, Pepinelli M, Borges D, Walsh EM, Bishop CA, Zayed A, Duffe J, Guarna MM, Foster LJ. Regional patterns and climatic predictors of viruses in honey bee (Apis mellifera) colonies over time. Sci Rep 2025; 15:286. [PMID: 39747229 PMCID: PMC11697360 DOI: 10.1038/s41598-024-79675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence. Temperature was a significant positive predictor of the total number of viruses per sample, which was highest in British Columbia (mean = 5.0). Lake Sinai virus (LSV) was the most prevalent overall (at 89%) and had the highest infection intensity, at an average of 3.9 × 108 copies per bee. Acute bee paralysis virus was the least prevalent virus (at 4.7%) and had the lowest infection intensity (1.9 × 105 copies per bee). Surprisingly, including Varroa abundance as a covariate did not significantly improve model fit for any virus. All viruses, except Kashmir bee virus, varied by region, and one or more climatic variables were significant predictors for six of the nine viruses. Although climatic effects were often inconsistent among individual viruses, we show that climatic variables can be better predictors of virus intensity and occurrence than Varroa mite abundance, at least when infestation rates are low.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Niloofar Alavi-Shoushtari
- Landscape Science and Technology, Environment & Climate Change Canada, Ottawa, ON, K1S 5B6, Canada
- Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Renata Labuschagne
- Technology Transfer Program, Alberta Beekeepers Commission, Edmonton, AB, T5M 3T9, Canada
| | - Lan Tran
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada
| | - Julia Common
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Heather Higo
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada
| | - Pierre Giovenazzo
- Département de Biologie, Université Laval, Ville de Québec, QC, G1V 0A6, Canada
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Wolf Veiga
- National Bee Diagnostic Centre, Northwestern Polytechnic, Beaverlodge, AB, T0H 0C0, Canada
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Ida M Conflitti
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Mateus Pepinelli
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Daniel Borges
- Technology Transfer Program, Ontario Beekeepers' Association, 185-5420 Highway 6 North, Guelph, ON, N1H6J2, Canada
| | - Elizabeth M Walsh
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada
- United States Department of Agriculture-Agricultural Research Service, Honey Bee Breeding, Genetics, and Physiology Research Unit, 1157 Ben Hur Road, Baton Rouge, LA, 70820, USA
| | - Christine A Bishop
- Environment & Climate Change Canada, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Jason Duffe
- Landscape Science and Technology, Environment & Climate Change Canada, Ottawa, ON, K1S 5B6, Canada
| | - M Marta Guarna
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada.
- Project Apis M, PO Box 26793, Salt Lake City, UT, 84126, USA.
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Van Herzele C, Coppens S, Vereecke N, Theuns S, de Graaf DC, Nauwynck H. New insights into honey bee viral and bacterial seasonal infection patterns using third-generation nanopore sequencing on honey bee haemolymph. Vet Res 2024; 55:118. [PMID: 39334245 PMCID: PMC11430211 DOI: 10.1186/s13567-024-01382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/21/2024] [Indexed: 09/30/2024] Open
Abstract
Honey bees are rapidly declining, which poses a significant threat to our environment and agriculture industry. These vital insects face a disease complex believed to be caused by a combination of parasites, viruses, pesticides, and nutritional deficiencies. However, the real aetiology is still enigmatic. Due to the conventional analysis methods, we still lack complete insights into the honey bee virome and the presence of pathogenic bacteria. To fill this knowledge gap, we employed third-generation nanopore metagenomic sequencing on honey bee haemolymph to monitor the presence of pathogens over almost a year. This study provides valuable insights into the changes in bacterial and viral loads within honey bee colonies. We identified different pathogens in the honey bee haemolymph, which are not included in honey bee screenings. These pathogens comprise the Apis mellifera filamentous virus, Apis rhabdoviruses, and various bacteria such as Frischella sp. and Arsenophonus sp. Furthermore, a sharp contrast was observed between young and old bees. Our research proposes that transgenerational immune priming may play a role in shaping infection patterns in honey bees. We observed a significant increase in pathogen loads in the spring, followed by a notable decrease in pathogen presence during the summer and autumn months. However, certain pathogens seem to be able to evade this priming effect, making them particularly intriguing as potential factors contributing to mortality. In the future, we aim to expand our research on honey bee transgenerational immune priming and investigate its potential in natural settings. This knowledge will ultimately enhance honey bee health and decrease colony mortality.
Collapse
Affiliation(s)
- Cato Van Herzele
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | | | - Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
- PathoSense BV, Pastoriestraat 10, 2500, Lier, Belgium
| | | | - Dirk C de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Rossi F, Del Matto I, Ricchiuti L, Marino L. Selection and Multiplexing of Reverse Transcription-Quantitative PCR Tests Targeting Relevant Honeybee Viral Pathogens. Microorganisms 2024; 12:1105. [PMID: 38930487 PMCID: PMC11205706 DOI: 10.3390/microorganisms12061105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Verifying the inclusivity of molecular detection methods gives indications about the reliability of viral infection diagnosis because of the tendency of viral pathogens to undergo sequence variation. This study was aimed at selecting inclusive probes based on reverse transcription-quantitative PCR (RT-qPCR) assays for the diagnosis of the most widespread and detrimental viruses infecting honeybees, namely the acute bee paralysis virus (ABPV), the black queen cell virus (BQCV), the chronic paralysis bee virus (CBPV), the deformed wing virus variants A (DWVA) and B (DWVB), and the sacbrood virus (SBV). Therefore, previously described detection methods were re-evaluated in silico for their specificity and inclusivity. Based on this evaluation, selected methods were modified, or new ones were designed and tested in duplex RT-qPCR reactions. The limits of detection (LODs), effect of multiplexing on sensitivity and the viral RNA quantification potential in bees and hive debris were assessed. This study made available diagnostic assays able to detect an increased number of virus variants compared with previously described tests and two viral pathogens in a single PCR reaction.
Collapse
Affiliation(s)
- Franca Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy; (I.D.M.); (L.R.); (L.M.)
| | | | | | | |
Collapse
|
6
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Anderson KE, Allen NO, Copeland DC, Kortenkamp OL, Erickson R, Mott BM, Oliver R. A longitudinal field study of commercial honey bees shows that non-native probiotics do not rescue antibiotic treatment, and are generally not beneficial. Sci Rep 2024; 14:1954. [PMID: 38263184 PMCID: PMC10806037 DOI: 10.1038/s41598-024-52118-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
Probiotics are widely used in agriculture including commercial beekeeping, but there is little evidence supporting their effectiveness. Antibiotic treatments can greatly distort the gut microbiome, reducing its protective abilities and facilitating the growth of antibiotic resistant pathogens. Commercial beekeepers regularly apply antibiotics to combat bacterial infections, often followed by an application of non-native probiotics advertised to ease the impact of antibiotic-induced gut dysbiosis. We tested whether probiotics affect the gut microbiome or disease prevalence, or rescue the negative effects of antibiotic induced gut dysbiosis. We found no difference in the gut microbiome or disease markers by probiotic application or antibiotic recovery associated with probiotic treatment. A colony-level application of the antibiotics oxytetracycline and tylosin produced an immediate decrease in gut microbiome size, and over the longer-term, very different and persistent dysbiotic effects on the composition and membership of the hindgut microbiome. Our results demonstrate the lack of probiotic effect or antibiotic rescue, detail the duration and character of dysbiotic states resulting from different antibiotics, and highlight the importance of the gut microbiome for honeybee health.
Collapse
Affiliation(s)
- Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA.
| | - Nathan O Allen
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Duan C Copeland
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | - Oliver L Kortenkamp
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert Erickson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ, 85719, USA
| | | |
Collapse
|
8
|
Damayo JE, McKee RC, Buchmann G, Norton AM, Ashe A, Remnant EJ. Virus replication in the honey bee parasite, Varroa destructor. J Virol 2023; 97:e0114923. [PMID: 37966226 PMCID: PMC10746231 DOI: 10.1128/jvi.01149-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.
Collapse
Affiliation(s)
- James E. Damayo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca C. McKee
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Institute of Plant Genetics, Heinrich-Heine University, Duesseldorf, Germany
| | - Amanda M. Norton
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Academic Support Unit, Research and Advanced Instrumentation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Nguyen TT, Yoo MS, Truong AT, Lee JH, Youn SY, Lee SJ, Kim DH, Yoon SS, Cho YS. First identification of Tyrophagus curvipenis (Acari: Acaridae) and pathogen detection in Apis mellifera colonies in the Republic of Korea. Sci Rep 2023; 13:9469. [PMID: 37301922 PMCID: PMC10257717 DOI: 10.1038/s41598-023-36695-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023] Open
Abstract
Mites of the genus Tyrophagus (Acari: Acaridae) are among the most widely distributed mites. The species in this genus cause damage to stored products and crops, and pose a threat to human health. However, the influence of Tyrophagus spp. in apiculture remains unknown. In 2022, a study focusing on the identification of Tyrophagus species within five apiaries was conducted in Chungcheongnam Province, Republic of Korea. Its specific objective was to investigate the presence of Tyrophagus mites in response to the reported high mortality of honey bee colonies in this area. Morphological identification and phylogenetic analysis using the mitochondrial gene cytochrome-c oxidase subunit 1 (CO1) confirmed for the first time the presence of the mite species Tyrophagus curvipenis in a honey bee colony in the Republic of Korea. Two honey bee pathogens were detected in the mite, a viral pathogen (deformed wing virus, DWV) and a protozoal pathogen (Trypanosoma spp.). The presence of the two honey bee pathogens in the mite suggests that this mite could contribute to the spread of related honey bee diseases. However, the direct influence of the mite T. curvipenis on honey bee health remains unknown and should be further investigated.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Mi-Sun Yoo
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Jong Ho Lee
- Plant Pest Control Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - So Youn Youn
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Laboratory of Parasitic and Honey Bee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Center for Honey Bee Disease Control, 39660, Gimcheon, Republic of Korea.
| |
Collapse
|
10
|
Bruce Krejčí A, Votýpková K, Lukeš J, Votýpka J. Varroa destructor. Trends Parasitol 2023; 39:487-488. [PMID: 36967341 DOI: 10.1016/j.pt.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
|