1
|
Oliver H, Ruta D, Thompson D, Kamli-Salino S, Philip S, Wilson HM, Mody N, Delibegovic M. Myeloid PTP1B deficiency protects against atherosclerosis by improving cholesterol homeostasis through an AMPK-dependent mechanism. J Transl Med 2023; 21:715. [PMID: 37828508 PMCID: PMC10568790 DOI: 10.1186/s12967-023-04598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory process induced by the influx and entrapment of excess lipoproteins into the intima media of arteries. Previously, our lab demonstrated that systemic PTP1B inhibition protects against atherosclerosis in preclinical LDLR-/- models. Similarly, it was shown that myeloid-specific PTP1B ablation decreases plaque formation and ameliorates dyslipidaemia in the ApoE-/- model of atherosclerosis. We hypothesized that the relevant improvements in dyslipidaemia following modification of PTP1B activation may either result from changes in hepatic cholesterol biosynthesis and/or increased uptake and degradation by liver-resident macrophages. We examined this in animal models and patients with coronary artery disease. METHODS In this study, we determined the cholesterol-lowering effect of myeloid-PTP1B deletion in mice fed a high-fat high-cholesterol diet and examined effects on total cholesterol levels and lipoprotein profiles. We also determined the effects of PTP1B inhibition to oxLDL-C challenge on foam cell formation and cholesterol efflux in human monocytes/macrophages. RESULTS We present evidence that myeloid-PTP1B deficiency significantly increases the affinity of Kupffer cells for ApoB containing lipoproteins, in an IL10-dependent manner. We also demonstrate that PTP1B inhibitor, MSI-1436, treatment decreased foam cell formation in Thp1-derived macrophages and increased macrophage cholesterol efflux to HDL in an AMPK-dependent manner. We present evidence of three novel and distinct mechanisms regulated by PTP1B: an increase in cholesterol efflux from foam cells, decreased uptake of lipoproteins into intra-lesion macrophages in vitro and a decrease of circulating LDL-C and VLDL-C in vivo. CONCLUSIONS Overall, these results suggest that myeloid-PTP1B inhibition has atheroprotective effects through improved cholesterol handling in atherosclerotic lesions, as well as increased reverse cholesterol transport. Trial registration Research registry, researchregistry 3235. Registered 07 November 2017, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/5a01d0fce7e1904e93e0aac5/ .
Collapse
Affiliation(s)
- Helk Oliver
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Dekeryte Ruta
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Grampian Diabetes Research Unit, JJR Macleod Centre, NHS Grampian, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Heather M Wilson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
2
|
Mathew D, Barillas-Cerritos J, Nedeljkovic-Kurepa A, Abraham M, Taylor MD, Deutschman CS. Phosphorylation of insulin receptor substrates (IRS-1 and IRS-2) is attenuated following cecal ligation and puncture in mice. Mol Med 2023; 29:106. [PMID: 37550630 PMCID: PMC10408057 DOI: 10.1186/s10020-023-00703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Sepsis is characterized as an insulin resistant state. However, the effects of sepsis on insulin's signal transduction pathway are unknown. The molecular activity driving insulin signaling is controlled by tyrosine phosphorylation of the insulin receptor β-subunit (IRβ) and of insulin receptor substrate molecules (IRS) -1 and IRS-2. HYPOTHESIS Cecal ligation and puncture (CLP) attenuates IRβ, IRS-1 and IRS-2 phosphorylation. METHODS IACUC-approved studies conformed to ARRIVE guidelines. CLP was performed on C57BL/6 mice; separate cohorts received intraperitoneal insulin at baseline (T0) or at 23 or 47 h. post-CLP, 1 h before mice were euthanized. We measured levels of (1) glucose and insulin in serum, (2) IRβ, IRS-1 and IRS-2 in skeletal muscle and liver homogenate and (3) phospho-Irβ (pIRβ) in liver and skeletal muscle, phospho-IRS-1 (pIRS-1) in skeletal muscle and pIRS-2 in liver. Statistical significance was determined using ANOVA with Sidak's post-hoc correction. RESULTS CLP did not affect the concentrations of IRβ, IRS-1or IRS-2 in muscle or liver homogenate or of IRS-1 in liver. Muscle IRS-1 concentration at 48 h. post-CLP was higher than at T0. Post-CLP pIRS-1 levels in muscle and pIRβ and pIRS-2 levels in liver were indistinguishable from T0 levels. At 48 h. post-CLP pIRβ levels in muscle were higher than at T0. Following insulin administration, the relative abundance of pIRβ in muscle and liver at T0 and at both post-CLP time points was significantly higher than abundance in untreated controls. In T0 controls, the relative abundance of pIRS-1 in muscle and of pIRS-2 in liver following insulin administration was higher than in untreated mice. However, at both post-CLP time points, the relative abundance of pIRS-1 in muscle and of pIRS-2 in liver following insulin administration was not distinguishable from the abundance in untreated mice at the same time point. Serum glucose concentration was significantly lower than T0 at 24 h., but not 48 h., post-CLP. Glucose concentration was lower following insulin administration to T0 mice but not in post-CLP animals. Serum insulin levels were significantly higher than baseline at both post-CLP time points. CONCLUSIONS CLP impaired insulin-induced tyrosine phosphorylation of both IRS-1 in muscle and IRS-2 in liver. These findings suggest that the molecular mechanism underlying CLP-induced insulin resistance involves impaired IRS-1/IRS-2 phosphorylation.
Collapse
Affiliation(s)
- Deepa Mathew
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Julia Barillas-Cerritos
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
- Pediatric Endocrinology, Metabolism and Diabetes, Winthrop Pediatrics Associates, Mineola, NY, USA
| | - Ana Nedeljkovic-Kurepa
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mabel Abraham
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Matthew D Taylor
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Lake Success, NY, USA.
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, Room 3140, 350 Community Dr, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Zheng W, Sun Q, Li L, Cheng Y, Chen Y, Lv M, Xiang X. Role of endoplasmic reticulum stress in hepatic glucose and lipid metabolism and therapeutic strategies for metabolic liver disease. Int Immunopharmacol 2022; 113:109458. [DOI: 10.1016/j.intimp.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
4
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
5
|
Besnier E, Brunel V, Thill C, Leprêtre P, Bellien J, Demailly Z, Renet S, Tamion F, Clavier T. Soluble RAGE as a Prognostic Marker of Worsening in Patients Admitted to the ICU for COVID-19 Pneumonia: A Prospective Cohort Study. J Clin Med 2022; 11:4571. [PMID: 35956186 PMCID: PMC9369719 DOI: 10.3390/jcm11154571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The different waves of SARS-CoV-2 infection have strained hospital resources and, notably, intensive care units (ICUs). Identifying patients at risk of developing a critical condition is essential to correctly refer patients to the appropriate structure and to spare limited resources. The soluble form of RAGE (sRAGE), the endoplasmic stress response and its surrogates, GRP78 and VEGF-A, may be interesting markers. Methods: This was a prospective monocenter cohort study of adult patients admitted to the ICU for severe COVID-19 pneumonia. The plasma levels of sRAGE, GRP78 and VEGF-A were measured within the first 24 h. Patients were classified as critical if they further needed vasopressor therapy, renal replacement therapy, or invasive mechanical ventilation, or died during their ICU stay, and were otherwise classified as not critical. Results: A total of 98 patients were included and 39 developed a critical condition. Critical patients presented higher sRAGE (626 [450−1043] vs. 227 [137−404] pg/mL, p < 0.0001), interleukin-6 (43 [15−112] vs. 11 [5−20] pg/mL, p < 0.0001), troponin T (17 [9−39] vs. 10 [6−18] pg/mL, p = 0.003) and NT-pro-BNP (321 [118−446] vs. 169 [63−366] pg/mL, p = 0.009) plasma levels. No difference was observed for VEGF-A and GRP78. The variables independently associated with worsening in the ICU were sRAGE (1.03 [1.01−1.05] per 10 pg/mL) and age (1.7 [1.2−2.4] per 5 years). An sRAGE value of 449.5 pg/mL predicted worsening with a sensitivity of 77% and a specificity of 80%. Conclusion: sRAGE may allow the identification of patients at risk of developing a critical form of COVID-19 pneumonia, and thus may be useful to correctly refer patients to the appropriate structure of care.
Collapse
Affiliation(s)
- Emmanuel Besnier
- Department of Anesthesiology and Critical Care, Rouen University Hospital, UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
- Rouen University Hospital, INSERM CIC-CRB 1404, F-76000 Rouen, France
| | - Valéry Brunel
- Department of General Biochemistry, Rouen University Hospital, F-76000 Rouen, France
| | - Caroline Thill
- Department of Biostatistics, Rouen University Hospital, F-76000 Rouen, France
| | - Perrine Leprêtre
- Department of Anesthesiology and Critical Care, Rouen University Hospital, UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
| | - Jérémy Bellien
- Rouen University Hospital, INSERM CIC-CRB 1404, F-76000 Rouen, France
- Department of Pharmacology, Rouen University Hospital, UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
| | - Zoe Demailly
- Medical Intensive Care Unit, Rouen University Hospital, UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
| | - Sylvanie Renet
- UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
| | - Fabienne Tamion
- Medical Intensive Care Unit, Rouen University Hospital, UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
| | - Thomas Clavier
- Department of Anesthesiology and Critical Care, Rouen University Hospital, UNIROUEN, INSERM U1096, Normandie Université, F-76000 Rouen, France
| |
Collapse
|
6
|
Metzing UB, von Loeffelholz C, Steidl R, Romeike B, Winkler R, Rauchfuß F, Settmacher U, Stoppe C, Coldewey SM, Weinmann C, Weickert MO, Claus RA, Birkenfeld AL, Kosan C, Horn P. Endoplasmic reticulum stress and the unfolded protein response in skeletal muscle of subjects suffering from peritoneal sepsis. Sci Rep 2022; 12:504. [PMID: 35017615 PMCID: PMC8752775 DOI: 10.1038/s41598-021-04517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
We provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.
Collapse
Affiliation(s)
- Uta Barbara Metzing
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| | - Ricardo Steidl
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
- Department of Anaesthesiology, Intensive Care, Pain Medicine and Emergency Medicine, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Bernd Romeike
- Section of Neuropathology, Department of Pathology, Jena University Hospital, Jena, Germany
- Dean's Office, Medical Didactics, University Rostock Medical Center, Rostock, Germany
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Christian Stoppe
- Department of Anesthesiology and Intensive Care Medicine Wuerzburg, University Hospital, Wuerzburg, Germany
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, Medical Faculty RWTH Aachen, Aachen, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Claudia Weinmann
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Centre of Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Ralf A Claus
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas L Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, Jena, Germany
| | - Paul Horn
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Pradhan K, Yi Z, Geng S, Li L. Development of Exhausted Memory Monocytes and Underlying Mechanisms. Front Immunol 2021; 12:778830. [PMID: 34777396 PMCID: PMC8583871 DOI: 10.3389/fimmu.2021.778830] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6Chi population, and deplete the homeostatic non-classical Ly6Clo population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6Chi monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD+; elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Clavier T, Demailly Z, Semaille X, Thill C, Selim J, Veber B, Doguet F, Richard V, Besnier E, Tamion F. A Weak Response to Endoplasmic Reticulum Stress Is Associated With Postoperative Organ Failure in Patients Undergoing Cardiac Surgery With Cardiopulmonary Bypass. Front Med (Lausanne) 2021; 7:613518. [PMID: 33659258 PMCID: PMC7917111 DOI: 10.3389/fmed.2020.613518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction: Endoplasmic reticulum stress (ERS) is involved in inflammatory organ failure. Our objective was to describe ERS, its unfolded protein response (UPR) expression/kinetics during cardiac surgery with cardiopulmonary bypass (CPB) and its association with postoperative organ failure (OF). Methods: Prospective study conducted on patients undergoing cardiac surgery with CPB. Blood samples were taken before (Pre-CPB), 2 h (H2-CPB) and 24 h (H24-CPB) after CPB. Plasma levels of 78 kDa Glucose- Regulated Protein (GRP78, final effector of UPR) were evaluated by ELISA. The expression of genes coding for key elements of UPR (ATF6, ATF4, sXBP1, CHOP) was evaluated by quantitative PCR performed on total blood. OF was defined as invasive mechanical ventilation and/or acute kidney injury and/or hemodynamic failure requiring catecholamines. Results: We included 46 patients, GRP78 was decreased at H2-CPB [1,328 (878-1,730) ng/ml vs. 2,348 (1,655-3,730) ng/ml Pre-CPB; p < 0.001] but returned to basal levels at H24-CPB [2,068 (1,436-3,005) ng/ml]. The genes involved in UPR had increased expression at H2 and H24. GRP78 plasma levels in patients with OF at H24-CPB (n = 10) remained below Pre-CPB levels [-27.6 (-51.5; -24.2)%] compared to patients without OF (n = 36) in whom GRP78 levels returned to basal levels [0.6 (-28.1; 26.6)%; p < 0.01]. H24-CPB ATF6 and CHOP expressions were lower in patients with OF than in patients without OF [2.3 (1.3-3.1) vs. 3.0 (2.7-3.7), p < 0.05 and 1.3 (0.9-2.0) vs. 2.2 (1.7-2.9), p < 0.05, respectively]. Conclusions: Low relative levels of GRP78 and weak UPR gene expression appeared associated with postoperative OF. Further studies are needed to understand ERS implication during acute organ failure in humans.
Collapse
Affiliation(s)
- Thomas Clavier
- Rouen University Hospital, Department of Anesthesiology and Critical Care, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Zoé Demailly
- Rouen University Hospital, Department of Anesthesiology and Critical Care, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Xavier Semaille
- Rouen University Hospital, Department of Anesthesiology and Critical Care, Rouen, France
| | - Caroline Thill
- Rouen University Hospital, Department of Biostatistics, Rouen, France
| | - Jean Selim
- Rouen University Hospital, Department of Anesthesiology and Critical Care, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Benoit Veber
- Rouen University Hospital, Department of Anesthesiology and Critical Care, Rouen, France
| | - Fabien Doguet
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France.,Rouen University Hospital, Department of Cardiac Surgery, Rouen, France
| | - Vincent Richard
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Emmanuel Besnier
- Rouen University Hospital, Department of Anesthesiology and Critical Care, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Fabienne Tamion
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, Rouen, France.,Rouen University Hospital, Department of Medical Critical Care, Rouen, France
| |
Collapse
|