1
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025; 16:1016-1031. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
2
|
Li X, Zheng S, Li H, Liu J, Yang F, Zhao X, Liang Y. 16S rRNA Sequencing and Metabolomics to Analyze Correlation Between Fecal Flora and Metabolites of Squabs and Parent Pigeons. Animals (Basel) 2025; 15:74. [PMID: 39795017 PMCID: PMC11718954 DOI: 10.3390/ani15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Intestinal microorganisms are essential for maintaining homeostasis, health, and development, playing a critical role in nutrient digestion, growth, and exercise performance in pigeons. In young pigeons, the gut microbiota is primarily acquired through pigeon milk, meaning the microbial composition of parent pigeons directly influences microbial colonization in squabs. However, research on the correlation between the gut microbial diversity of parent pigeons and their offspring remains scarce. This study investigates the fecal microbiota and metabolites of 10 pairs of parent pigeons and 20 squabs raised under a 2 + 2 system. Fecal samples were collected at 15 days of age, and differences in the microbiota and metabolites between the two groups were analyzed using 16S rRNA sequencing and LC-MS/MS. The results showed the following: (1) Squabs exhibited significantly lower α diversity, with a reduction in their Chao1 index and observed OTUs compared to the parent pigeons. (2) Firmicutes dominated the fecal microbiota in both groups, but parent pigeon feces showed a notably higher abundance of Proteobacteria. At the family level, 10 distinct families were identified, with 9 at the genus level and 4 at the species level. (3) A LEfSe analysis identified 16 significantly different bacterial species in the parent pigeons and 7 in the squabs. Functional gene abundance was highest in the metabolism, genetic information processing, and environmental information processing pathways. (4) An LC-MS/MS analysis in cationic mode identified 218 metabolites, with 139 upregulated and 79 downregulated in the squabs relative to the parents. These metabolites were primarily concentrated in five functional categories and enriched in 33 pathways, 2 of which showed significant differences. In conclusion, significant differences in both the α and β diversity of fecal microbiota were observed between squabs and parent pigeons, with similar bacterial species but marked differences in abundance. Metabolite analysis revealed greater richness in the parent pigeon feces. These findings suggest that future gut modulation using beneficial bacteria, such as probiotics, could potentially enhance host health based on microbial and metabolite compositions.
Collapse
Affiliation(s)
- Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (X.L.); (S.Z.); (F.Y.); (X.Z.); (Y.L.)
| | - Shengchen Zheng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (X.L.); (S.Z.); (F.Y.); (X.Z.); (Y.L.)
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (X.L.); (S.Z.); (F.Y.); (X.Z.); (Y.L.)
| | - Jiajia Liu
- Moyu Blue Sea Pigeon Industry Co., Ltd., Hetian 848101, China;
| | - Fan Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (X.L.); (S.Z.); (F.Y.); (X.Z.); (Y.L.)
| | - Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (X.L.); (S.Z.); (F.Y.); (X.Z.); (Y.L.)
| | - Yafei Liang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (X.L.); (S.Z.); (F.Y.); (X.Z.); (Y.L.)
- Moyu Blue Sea Pigeon Industry Co., Ltd., Hetian 848101, China;
| |
Collapse
|
3
|
Li X, Li N, Pei H, Ren Y, Li L, Sun L, Wu Y, Yuan J, Ma Y. Zhuanggu Shubi ointment mediated the characteristic bacteria-intestinal mucosal barrier-bone metabolism axis to intervene in postmenopausal osteoporosis. Front Cell Infect Microbiol 2024; 14:1500111. [PMID: 39698319 PMCID: PMC11652507 DOI: 10.3389/fcimb.2024.1500111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Background Zhuanggu Shubi ointment (ZGSBG) has good efficacy in postmenopausal osteoporosis (PMO), but the mechanism of efficacy involving gut microecology has not been elucidated. Objective This study investigated the mechanism of ZGSBG in regulating gut microecology in PMO. Methods The bilateral ovarian denervation method was used to construct a rat model of PMO and was administered ZGSBG. Behavior, bone transformation, gut microbiota, intestinal mucosal barrier, and intestinal inflammatory-related indexes were detected. Results After ZGSBG intervention, bone R-hydroxy glutamic acid protein and procollagen type I N-terminal propeptides were significantly upregulated, while C-terminal telopeptide of type-I collagen and tartrate-resistant acid phosphatase-5b were significantly downregulated. Pathological analysis demonstrated an improvement in femoral and colonic structures. The expressions of zonula occludens-1, occludin, claudin-1, and secretory immunoglobulin A in the colonic tissues were significantly elevated, while the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, and lipopolysaccharides were reduced. Moreover, characteristic bacteria Muribaculaceae and Prevotella were significantly enriched. Furthermore, Muribaculaceae and Prevotella have a positive correlation with intestinal mucosal barrier function and a negative correlation with intestinal inflammatory responses. Conclusion ZGSBG promoted bone formation, inhibited bone resorption, regulated gut microbiota, repaired intestinal mucosal barrier damage, and inhibited intestinal inflammatory responses in PMO rats. Muribaculaceae and Prevotella might play positive roles in ZGSBG treatment of intestinal mucosal barrier injury and inflammatory reactions in PMO.
Collapse
Affiliation(s)
- Xiaoya Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Huan Pei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yu Ren
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lei Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lan Sun
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuan Ma
- Department of Orthopedicis, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
4
|
Wu W, Yang H, Li X, Zhou Z, Tan W, Quan JH. METTL14 is Involved in TNF-α-Induced Inflammation in Colorectal Epithelial Cells via Autophagy Modulation. Appl Biochem Biotechnol 2024; 196:8453-8470. [PMID: 38878159 DOI: 10.1007/s12010-024-04940-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 01/04/2025]
Abstract
Ulcerative colitis (UC) is a chronic and relapsing inflammatory bowel disease (IBD) characterized by colorectal inflammation. The N6-methyladenosine (m6A) modification of RNA regulates gene expression through the modulation of RNA metabolism, thus influencing various physiological and pathological processes. The aim of this study was to investigate the biological function of m6A methyltransferase METTL14 in colorectal epithelial cell inflammation. Bioinformatics analysis indicated that METTL14 expression was decreased in UC and was associated with disease severity and immune infiltration. We also noted a downregulation of METTL14 expression and a decrease in the total m6A RNA levels in TNF-α-stimulated Caco-2 cells. Moreover, METTL14 knockdown promoted inflammation and inhibited autophagy in TNF-α-stimulated Caco-2 cells, as indicated by the upregulation of NF-κB signaling and pro-inflammatory cytokine expression as well as LC3B protein downregulation. Treatment with the autophagy activator Torin-1 ameliorated the pro-inflammatory effects of METTL14 silencing. Furthermore, METTL14 knockdown significantly reduced the expression of ATG5. ATG5 overexpression could nullify the pro-inflammatory effect of METTL14 knockdown in TNF-α-stimulated Caco-2 cells. Mechanistically, METTL14 knockdown promoted ATG5 mRNA degradation, and luciferase analysis identified ATG5 as a target of m6A modification by METTL14. Taken together, silencing METTL14 promoted inflammation in Caco-2 cells via the downregulation of ATG5. Our findings revealed the importance of the m6A modification in colonic inflammation and autophagy, indicating that targeting METTL14 might be a potential therapeutic strategy for anti-inflammatory treatment in UC.
Collapse
Affiliation(s)
- Weiyun Wu
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hui Yang
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaowen Li
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhuliang Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wenkai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
5
|
Qiu W, Wang Z, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Zhang X, Tu M. Structure and regulatory mechanisms of food-derived peptides in inflammatory bowel disease: A review. Food Sci Nutr 2024; 12:6055-6069. [PMID: 39554349 PMCID: PMC11561845 DOI: 10.1002/fsn3.4228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 11/19/2024] Open
Abstract
The number of patients with inflammatory bowel disease (IBD) is increasing worldwide. Since IBD is a chronic disease that seriously affects patients' life quality, preventing and alleviating IBD with natural and less side effect substances has become a research hotspot. Food-derived bioactive peptides have been an attractive research focus due to their high efficiency and low toxicity. This paper comprehensively summarizes food-derived peptides with intestinal health effects, focusing on peptide sequences with IBD-regulatory effects and emphasizing the effects of their structure and physicochemical properties such as peptide length, amino acid composition, and net charge on their function. We also analyzed its regulatory mechanisms, mainly in 5 aspects: modulating the intestinal microbiota, decreasing intestinal epithelial permeability, increasing antioxidant ability, regulating the expression of inflammatory cytokines, and targeting signaling pathways. This review will help establish novel, efficient screening methods for IBD-regulatory peptides and contribute to further research and discovery of them.
Collapse
Affiliation(s)
- Wenpei Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | | | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| |
Collapse
|
6
|
Fang X, Liu H, Du Y, Jiang L, Gao F, Wang Z, Chi Z, Shi B, Zhao X. Bacillus siamensis Targeted Screening from Highly Colitis-Resistant Pigs Can Alleviate Ulcerative Colitis in Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0415. [PMID: 39015206 PMCID: PMC11249912 DOI: 10.34133/research.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Ulcerative colitis (UC) is often accompanied by intestinal inflammation and disruption of intestinal epithelial structures, which are closely associated with changes in the intestinal microbiota. We previously revealed that Min pigs, a native Chinese breed, are more resistant to dextran sulfate sodium (DSS)-induced colitis than commercial Yorkshire pigs. Characterizing the microbiota in Min pigs would allow identification of the core microbes that confer colitis resistance. By analyzing the microbiota linked to the disease course in Min and Yorkshire pigs, we observed that Bacillus spp. were enriched in Min pigs and positively correlated with pathogen resistance. Using targeted screening, we identified and validated Bacillus siamensis MZ16 from Min pigs as a bacterial species with biofilm formation ability, superior salt and pH tolerance, and antimicrobial characteristics. Subsequently, we administered B. siamensis MZ16 to conventional or microbiota-deficient BALB/c mice with DSS-induced colitis to assess its efficacy in alleviating colitis. B. siamensis MZ16 partially counteracted DSS-induced colitis in conventional mice, but it did not mitigate DSS-induced colitis in microbiota-deficient mice. Further analysis revealed that B. siamensis MZ16 administration improved intestinal ecology and integrity and immunological barrier function in mice. Compared to the DSS-treated mice, mice preadministered B. siamensis MZ16 exhibited improved relative abundance of potentially beneficial microbes (Lactobacillus, Bacillus, Christensenellaceae R7, Ruminococcus, Clostridium, and Eubacterium), reduced relative abundance of pathogenic microbes (Escherichia-Shigella), and maintained colonic OCLN and ZO-1 levels and IgA and SIgA levels. Furthermore, B. siamensis MZ16 reduced proinflammatory cytokine levels by reversing NF-κB and MAPK pathway activation in the DSS group. Overall, B. siamensis MZ16 from Min pigs had beneficial effects on a colitis mouse model by enhancing intestinal barrier functions and reducing inflammation in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Haiyang Liu
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yongqing Du
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Lin Jiang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Feng Gao
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zhengyi Wang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zihan Chi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Baoming Shi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuan Zhao
- College of Animal Science and Technology,
Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
7
|
Huang Z, Zhang L, Xuan J, Yang L, Zhao T, Peng W. Tea for histamine anti-allergy: component analysis of tea extracts and potential mechanism for treating histamine anti-allergy. Front Pharmacol 2024; 15:1296190. [PMID: 38873420 PMCID: PMC11169817 DOI: 10.3389/fphar.2024.1296190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
In China, Camellia plants are widely used to reduce atopic dermatitis and inflammation-related diseases, but their protective mechanisms remain unclear. This study investigated the anti-allergic dermatitis, anti-oxidation and anti-inflammation effect and underlying mechanism of five Camellia species, including Camellia ptilophylla Chang, Camellia assamica Chang var. Kucha Chang, Camellia parvisepala Chang, Camellia arborescens Chang, and C. assamica M. Chang. A total of about 110 chemical compositions were detected from five Camellia teas extracts. The level of mast cell infiltration in the model mice skin was determined by HE (Hematoxylin and eosin) staining and toluidine blue staining, and the level of interleukin-1β (IL-1β) and nerve growth factor was detected by immunohistochemistry. The five Camellia tea leaf extracts have histamine-induced allergic dermatitis. Lipopolysaccharide (Lipopolysaccharide)-induced murine macrophage RAW264.7 inflammation model was found to secrete NF-κB factor, as shown by immunofluorescence, and reactive oxygen species secretion and related cytokine levels were detected. The results suggested that Camellia's five tea extracts had the ability to resist cellular oxidative stress. In addition, the results of cell inflammatory cytokines including fibronectin (FN) and interleukin-6 (IL-6) suggested that the five tea extracts of Camellia had anti-inflammatory effects. Therefore, it is suggested that five Camellia teas may possess inhibitory properties against allergic reactions, oxidative stress, and inflammation, and may prove beneficial in the treatment of allergies.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Lu Yang
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Tiantian Zhao
- Sericulture and Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Department of Food Science, Rutgers University, New Brunswick, NB, United States
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| |
Collapse
|
8
|
Li H, Li H, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Exopolysaccharides Produced by Bifidobacterium longum subsp. longum YS108R Ameliorates DSS-Induced Ulcerative Colitis in Mice by Improving the Gut Barrier and Regulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7055-7073. [PMID: 38520351 DOI: 10.1021/acs.jafc.3c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Chen JH, Zhao CL, Li YS, Yang YB, Luo JG, Zhang C, Wang L. Moutai Distiller's grains Polyphenol extracts and rutin alleviate DSS-induced colitis in mice: Modulation of gut microbiota and intestinal barrier function (R2). Heliyon 2023; 9:e22186. [PMID: 38045189 PMCID: PMC10692825 DOI: 10.1016/j.heliyon.2023.e22186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Distiller's grains, byproducts of the brewing process, represent a valuable resource for extracting natural phenolic compounds due to their significant global production. This study presents the first evidence of the protective effects of Moutai distiller's grain polyphenol extract (MDGP) on dextran sulfate sodium (DSS)-induced colitis in mice. These protective effects manifest predominantly through the amelioration of general colitis indices and histopathological improvements. Utilizing liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), the main components of MDGP were identified as rutin, quercetin, naringenin, and dihydroquercetin. Moreover, a novel mechanism was elucidated by which rutin, the primary active component of MDGP, alleviates DSS-induced colitis. Assessment of intestinal barrier function, microbial sequencing, fecal transplantation, and antibiotic depletion experiments revealed that rutin suppresses the abundance of pathogenic bacteria (Helicobacter, Klebsiella, and Veillonella) while promoting the proliferation of beneficial bacteria (Ruminococcus_torques_group, Lachnoclostridium, and norank_f__Muribaculaceae). This modulation culminates in elevated butyric acid concentrations within short-chain fatty acids (SCFAs), amplified integrity of tight (ZO-1, occludin) and adherent (E-cadherin, β-catenin) junctional complexes, fortified intestinal barrier function, and diminished intestinal inflammation.This investigation accentuates the innovative therapeutic potential of MDGP and its main active component, rutin, in assuaging DSS-induced intestinal inflammation and fortifying the intestinal barrier through a mechanism predominantly mediated by the intestinal microbiota. Such insights potentially elevate the prominence of distiller's grains in the realm of functional food development.
Collapse
Affiliation(s)
- Jin-hu Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Cai-li Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yong-su Li
- Kweichow Moutai Co., Ltd, Zunyi, Guizhou 564501, China
- Baijiu manufacturing innovation center of Guizhou Province, Zunyi, Guizhou 564501, China
| | - Yu-bo Yang
- Kweichow Moutai Co., Ltd, Zunyi, Guizhou 564501, China
- Baijiu manufacturing innovation center of Guizhou Province, Zunyi, Guizhou 564501, China
| | - Jian-guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Wang
- Baijiu manufacturing innovation center of Guizhou Province, Zunyi, Guizhou 564501, China
- Kweichow Moutai Group, Zunyi, Guizhou 564501, China
| |
Collapse
|
10
|
LI C, YANG Y, FENG C, LI H, QU Y, WANG Y, WANG D, WANG Q, GUO J, SHI T, SUN X, WANG X, HOU Y, SUN Z, YANG T. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome. J TRADIT CHIN MED 2023; 43:1176-1189. [PMID: 37946480 PMCID: PMC10623263 DOI: 10.19852/j.cnki.jtcm.20231018.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe the efficacy of moxibustion in the treatment of chronic fatigue syndrome (CFS) and explore the effects on gut microbiota and metabolic profiles. METHODS Forty-eight male Sprague-Dawley rats were randomly assigned to control group (Con), CFS model group (Mod, established by multiple chronic stress for 35 d), MoxA group (CFS model with moxibustion Shenque (CV8) and Guanyuan (CV4), 10 min/d, 28 d) and MoxB group (CFS model with moxibustion Zusanli (ST36), 10 min/d, 28 d). Open-field test (OFT) and Morris-water-maze test (MWMT) were determined for assessment the CFS model and the therapeutic effects of moxibustion.16S rRNA gene sequencing analysis based gut microbiota integrated untargeted liquid chromatograph-mass spectrometer (LC-MS) based fecal metabolomics were executed, as well as Spearman correlation analysis, was utilized to uncover the functional relevance between the potential metabolites and gut microbiota. RESULTS The results of our behavioral tests showed that moxibustion improved the performance of CFS rats in the OFT and the MWMT. Microbiome profiling analysis revealed that the gut microbiomes of CFS rats were less diverse with altered composition, including increases in pro-inflammatory species (such as Proteobacteria) and decreases in anti-inflammatory species (such as Bacteroides, Lactobacillus, Ruminococcus, and Prevotella). Moxibustion partially normalized these changes in the gut microbiota. Furthermore, CFS was associated with metabolic disorders, which were effectively ameliorated by moxibustion. This was demonstrated by the normalization of 33 microbiota-related metabolites, including mannose (P = 0.001), aspartic acid (P = 0.009), alanine (P = 0.007), serine (P = 0.000), threonine (P = 0.027), methionine (P = 0.023), 5-hydroxytryptamine (P = 0.008), alpha-linolenic acid (P = 0.003), eicosapentaenoic acid (P = 0.006), hypoxanthine (P = 0.000), vitamin B6 (P = 0.000), cholic acid (P = 0.013), and taurocholate (P = 0.002). Correlation analysis showed a significant association between the perturbed fecal microbiota and metabolite levels, with a notable negative relationship between LCA and Bacteroides. CONCLUSIONS In this study, we demonstrated that moxibustion has an antifatigue-like effect. The results from the 16S rRNA gene sequencing and metabolomics analysis suggest that the therapeutic effects of moxibustion on CFS are related to the regulation of gut microorganisms and their metabolites. The increase in Bacteroides and decrease in LCA may be key targets for the moxibustion treatment of CFS.
Collapse
Affiliation(s)
- Chaoran LI
- 1 Department of Acupuncture, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Yan YANG
- 2 Department of Chinese Medical Literature, College of Basic Medicine, Heilongjiang University of Chinese medicine, Harbin 150040, China
| | - Chuwen FENG
- 3 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Heng LI
- 7 Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China
| | - Yuanyuan QU
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Yulin WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Delong WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Qingyong WANG
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing GUO
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tianyu SHI
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xiaowei SUN
- 4 Department of Acupuncture, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xue WANG
- 8 Department of Acupuncture, Chongqing Changshou District People's Hospital, Chongqing 401220, China
| | - Yunlong HOU
- 9 College of integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, and National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei 050000, China
| | - Zhongren SUN
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tiansong YANG
- 10 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, and Traditional Chinese Medicine Informatics Key Laboratory of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
11
|
Lv H, Jia H, Cai W, Cao R, Xue C, Dong N. Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3926-3938. [PMID: 36347632 DOI: 10.1002/jsfa.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulcerative colitis is a gastrointestinal disease closely related to intestinal epithelial barrier damage and intestinal microbiome imbalance; however, effective treatment methods are currently limited. Rehmannia glutinosa polysaccharide (RGP) is an important active ingredient with a wide range of pharmacological activities, although its protective effect on colitis remains to be explored. In the present study, we verified the in vitro anti-inflammatory effect of RGP, and observed the ameliorating effect of RGP on dextran sulfate sodium-induced colitis in mice. RESULTS The results showed that (i) RGP attenuates lipopolysaccharide-induced overexpression of inflammatory factors in RAW264.7 cells; (ii) RGP improves the pathological damage caused by DSS, including weight loss, increased disease activity index and intestinal tissue ulcers; (iii) RGP improves tight junction proteins to protects the tightness of the intestinal epithelium; (iv) RGP inhibits the expression of inflammatory factors through the nuclear factor-kappa B pathway, and improved the of intestinal tissues inflammation; and (v) RGP can maintain the species diversity of intestinal microbes, increase the content of short-chain fatty acids and then restore the imbalance of intestinal microecology. CONCLUSION RGP can improve the intestinal microbiota to strengthen the intestinal epithelial barrier and protect against DSS-induced colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Chen Y, Gao Y, Yuan M, Zheng Z, Yin J. Anti- Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A. Int J Mol Sci 2023; 24:ijms24119350. [PMID: 37298302 DOI: 10.3390/ijms24119350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen, and its drug resistance is becoming a serious problem. Camellia sinensis seed saponins showed inhibitory effects on resistant Candida albicans strains, but the active components and mechanisms are unclear. In this study, the effects and mechanisms of two Camellia sinensis seed saponin monomers, theasaponin E1 (TE1) and assamsaponin A (ASA), on a resistant Candida albicans strain (ATCC 10231) were explored. The minimum inhibitory concentration and minimum fungicidal concentration of TE1 and ASA were equivalent. The time-kill curves showed that the fungicidal efficiency of ASA was higher than that of TE1. TE1 and ASA significantly increased the cell membrane permeability and disrupted the cell membrane integrity of C. albicans cells, probably by interacting with membrane-bound sterols. Moreover, TE1 and ASA induced the accumulation of intracellular ROS and decreased the mitochondrial membrane potential. Transcriptome and qRT-PCR analyses revealed that the differentially expressed genes were concentrated in the cell wall, plasma membrane, glycolysis, and ergosterol synthesis pathways. In conclusion, the antifungal mechanisms of TE1 and ASA included the interference with the biosynthesis of ergosterol in fungal cell membranes, damage to the mitochondria, and the regulation of energy metabolism and lipid metabolism. Tea seed saponins have the potential to be novel anti-Candida albicans agents.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Mingan Yuan
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Zhaisheng Zheng
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
13
|
Characteristics of the intestinal bacterial microbiota profiles in Bifidobacterium pseudocatenulatum LI09 pre-treated rats with D-galactosamine-induced liver injury. World J Microbiol Biotechnol 2023; 39:43. [DOI: 10.1007/s11274-022-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
|
14
|
Gu X, Miao Z, Wang Y, Yang Y, Yang T, Xu Y. New Baitouweng decoction combined with fecal microbiota transplantation alleviates DSS-induced colitis in rats by regulating gut microbiota metabolic homeostasis and the STAT3/NF-κB signaling pathway. BMC Complement Med Ther 2022; 22:307. [PMID: 36424592 PMCID: PMC9686021 DOI: 10.1186/s12906-022-03766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
AIM OF THE STUDY We aimed to elucidate the synergistic effect and potential mechanism of New Baitouweng Decoction (NBD) combined with fecal microbiota transplantation (FMT) in rats with DSS-induced ulcerative colitis (UC). MATERIALS AND METHODS Colitis was induced by 5% (w/v) dextran sulfate sodium (DSS) in drinking water for 7 days. NBD or NBD combined with FMT were administered to the colitis rats. Body weight and disease activity index were measured, and the colon histological change was imaged to further examine the efficacy of NBD and FMT. The specific effects of NBD on STAT3/NF-κB signaling pathway and gut microbiota in rats with UC were also investigated. RESULTS The efficacy of NBD in combination with FMT was demonstrated by the lower disease activity index scores; increased tight junction proteins expression; and a lower expression of macrophage marker (F4/80) in colon tissues. NBD combined with FMT elevated the concentrations of short-chain fatty acids and inhibited activation of the JAK2/STAT3/NF-κB related proteins. Furthermore, 16SrDNA sequencing indicated that the gut microbiota in rats with UC was perturbed, in contrast to that in healthy rats. After treatment with NBD and FMT, the diversity and abundance of intestinal flora showed clear improvements. Spearman correlation analysis indicated a strong correlation between specific microbiota and fecal concentrations of acetate, propionate and butyrate. CONCLUSIONS The protective mechanism of NBD combined with FMT may be linked to regulation NF-κB/STAT3 and restoration of the intestinal flora.
Collapse
Affiliation(s)
- Xin Gu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhiwei Miao
- grid.410745.30000 0004 1765 1045Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yantian Wang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Yang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Tongtong Yang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yi Xu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Yan BF, Chen X, Chen YF, Liu SJ, Xu CX, Chen L, Wang WB, Wen TT, Zheng X, Liu J. Aqueous extract of Paeoniae Radix Alba (Paeonia lactiflora Pall.) ameliorates DSS-induced colitis in mice by tunning the intestinal physical barrier, immune responses, and microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115365. [PMID: 35597411 DOI: 10.1016/j.jep.2022.115365] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic non-specific intestinal inflammatory disease, the pathogenesis of which is strongly associated with the compromised intestinal barrier. Paeoniae Radix Alba (PRA), the root of Paeonia lactiflora Pall., is a well-known traditional Chinese medicine and an adaptogen used in Hozai, exhibiting appreciable anti-inflammatory and immunomodulatory activity. Nevertheless, the role and mechanism of PRA in UC have yet to be elucidated. AIM OF THE STUDY This study was set out to examine the ameliorative effects of the aqueous extract of PRA (i.e., PRA dispensing granule, PRADG) on dextran sulfate sodium (DSS)-induced colitis. MATERIALS AND METHODS The chemical components of PRADG was analyzed by HPLC. Colitis model mice were induced by free access to water containing 2.5% DSS for 10 consecutive days, and concurrently, PRADG (0.1025 and 0.41 g/kg) or Salazosulfapyridine (SASP, 450 mg/kg) was given orally from day 1-10. Body weight, disease activity index (DAI), colon length, histologic scoring, and inflammatory response were assessed. Additionally, IL-23/IL-17 axis and tight junction (TJ) proteins, as well as gut microbiota were also investigated under the above-mentioned regimen. RESULTS Eight main chemical constituents of CPT were revealed with HPLC analysis. Noticeably, PRADG could effectively lower body weight loss as well as DAI scores, alleviate colon shortening, and reduce the levels of proinflammatory cytokines in mice with colitis. Further exploration found that increment of TJ proteins expression (ZO-1, occludin and claudin-1) and inhibition of IL-23/IL-17 axis-modulated inflammation were observed in PRADG-treated mice. Additionally, the diversity of gut microbiota and the relative abundance of beneficial bacteria were increased following PRADG treatment. CONCLUSIONS PRADG could be sufficient to ameliorate colitis by regulating the intestinal physical barrier, immune responses, and gut microbiota in mice. Our findings highlight that PRADG might be a prospective remedy for UC.
Collapse
Affiliation(s)
- Bao-Fei Yan
- Jiangsu Health Vocational College, Nanjing, 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae, Nanjing, 210023, PR China
| | - Xi Chen
- Jiangsu College of Nursing, Huaian, 223001, PR China
| | - Ya-Fang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Sheng-Jin Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae, Nanjing, 210023, PR China
| | - Chen-Xin Xu
- Jiangsu Health Vocational College, Nanjing, 210023, PR China
| | - Ling Chen
- Jiangsu Health Vocational College, Nanjing, 210023, PR China
| | - Wen-Bo Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Ting-Ting Wen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China.
| | - Jia Liu
- Jiangsu Health Vocational College, Nanjing, 210023, PR China.
| |
Collapse
|
16
|
Wang S, Huang J, Liu F, Tan KS, Deng L, Lin Y, Tan W. Isosteviol Sodium Exerts Anti-Colitic Effects on BALB/c Mice with Dextran Sodium Sulfate-Induced Colitis Through Metabolic Reprogramming and Immune Response Modulation. J Inflamm Res 2021; 14:7107-7130. [PMID: 34992409 PMCID: PMC8709797 DOI: 10.2147/jir.s344990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Inflammatory bowel diseases (IBDs) are global health problems that are associated with immune regulation, but clinical IBDs treatment is currently inadequate. Effective preventive or therapeutic methods for immune disorders rely on controlling the function of immune cells. Isosteviol sodium (STV-Na) has antioxidant activity, but the therapeutic effect of STV-Na against IBD remain undocumented. Herein, we investigated the therapeutic effect of STV-Na in mice models with IBDs. METHODS Mice received 3.5% DSS for 7 days to establish IBD models. Intraperitoneal STV-Na was given 2 days before DSS and lasted for 9 days. Commercially available drugs used in treating IBDs (5-aminosalicylic acid, dexamethasone, and infliximab) were used as positive controls. Samples were collected 7 days after colitis induction. Histopathological score, biochemical parameters, molecular biology methods, and metabolomics were used for evaluating the therapeutic effect of STV-Na. RESULTS Our data revealed that STV-Na could significantly alleviate colon inflammation in mice with colitis. Specifically, STV-Na treatment improved body weight loss, increased colon length, decreased histology scores, and restored the hematological parameters of mice with colitis. The untargeted metabolomics analysis revealed that metabolic profiles were restored by STV-Na treatment. Furthermore, STV-Na therapy suppressed the number of CD68 macrophages and F4/80 cell infiltration. And STV-Na suppressed M1 and M2 macrophage numbers along with the mRNA expressions of proinflammatory cytokines. Moreover, STV-Na administration increased the number of regulatory T (Treg) cells while decreasing Th1/Th2/Th17 cell counts in the spleen. Additionally, STV-Na treatment restored intestinal barrier disruption in DSS-triggered colitis tissues by ameliorating the TJ proteins, increasing goblet cell proportions, and mucin protein production, and decreasing the permeability to FITC-dextran, which was accompanied by decreased plasma LPS and DAO contents. CONCLUSION These results indicate that STV-Na can ameliorate colitis by modulating immune responses along with metabolic reprogramming, and could therefore be a promising therapeutic strategy for IBDs.
Collapse
Affiliation(s)
- Shanping Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Jiandong Huang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Fei Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Keai Sinn Tan
- College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
- Post-Doctoral Innovation Site, Jinan University, Yuanzhi Health Technology Co, Ltd, Zhuhai, People’s Republic of China
| | - Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yue Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Wen Tan
- Post-Doctoral Innovation Site, Jinan University, Yuanzhi Health Technology Co, Ltd, Zhuhai, People’s Republic of China
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
17
|
Liang L, Xiong Q, Kong J, Tian C, Miao L, Zhang X, Du H. Intraperitoneal supplementation of iron alleviates dextran sodium sulfate-induced colitis by enhancing intestinal barrier function. Biomed Pharmacother 2021; 144:112253. [PMID: 34607106 DOI: 10.1016/j.biopha.2021.112253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Iron supplementation is necessary for the treatment of anemia, one of the most frequent complications in inflammatory bowel disease (IBD). However, oral iron supplementation leads to an exacerbation of intestinal inflammation. Gut barrier plays a key role in the pathogenesis of IBD. The aim of this study was to characterize the interrelationship between systemic iron, intestinal barrier and the development of intestinal inflammation in a dextran sulfate sodium (DSS) induced experimental colitis mice model. We found that DSS-treated mice developed severe inflammation of colon, but became much healthy when intraperitoneal injection with iron. Iron supplementation alleviated colonic and systemic inflammation by lower histological scores, restorative morphology of colonic villi, and reduced expression of pro-inflammatory cytokines. Moreover, intraperitoneal supplementation of iron enhanced intestinal barrier function by upregulating the colonic expressions of tight junction proteins, restoring intestinal immune homeostasis by regulating immune cell infiltration and T lymphocyte subsets, and increasing mucous secretion of goblet cells in the colon. High-throughput sequencing of fecal 16 S rRNA showed that iron injection significantly increased the relative abundance of Bacteroidetes, which was suppressed in the gut microbiota of DSS-induced colitis mice. These results provided evidences supporting the protective effects of systemic iron repletion by intraperitoneal injection of iron on intestinal barrier functions. The finding highlights a novel approach for the treatment of IBD with iron injection therapy.
Collapse
Affiliation(s)
- Li Liang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Xiong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jingxia Kong
- Department of Investment and Insurance, Zhejiang Financial College, Hangzhou, China
| | - Chenying Tian
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Linfeng Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huahua Du
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Wu Y, Wu J, Lin Z, Wang Q, Li Y, Wang A, Shan X, Liu J. Administration of a Probiotic Mixture Ameliorates Cisplatin-Induced Mucositis and Pica by Regulating 5-HT in Rats. J Immunol Res 2021; 2021:9321196. [PMID: 34568500 PMCID: PMC8461230 DOI: 10.1155/2021/9321196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Probiotic-based therapies have been shown to be beneficial for chemotherapy-induced mucositis. Previous research has demonstrated that a probiotic mixture (Bifidobacterium brevis, Lactobacillus acidophilus, Lactobacillus casei, and Streptococcus thermophilus) can ameliorate chemotherapy-induced mucositis and dysbiosis in rats, but the underlying mechanism has not been completely elucidated. We aimed to determine the inhibitory effects of the probiotic mixture on cisplatin-induced mucositis and pica and the underlying mechanism, focusing on the levels of 5-hydroxytryptamine (5-HT, serotonin) regulated by the gut microbiota. A rat model of mucositis and pica was established by daily intraperitoneal injection of cisplatin (6 mg/kg) for 3 days. In the probiotic+cisplatin group, predaily intragastric injection of the probiotic mixture (1 × 109 CFU/kg BW) was administrated for 1 week before cisplatin injection. This was then followed by further daily probiotic injections for 6 days. Histopathology, pro-/anti-inflammatory cytokines, oxidative status, and 5-HT levels were assessed on days 3 and 6. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and quantitative PCR. Additionally, 5-HT levels in enterochromaffin (EC) cells (RIN-14B cell line) treated with cisplatin and/or various probiotic bacteria were also determined. The probiotic mixture significantly attenuated kaolin consumption, inflammation, oxidative stress, and the increase in 5-HT concentrations in rats with cisplatin-induced intestinal mucositis and pica. Cisplatin markedly increased the relative abundances of Enterobacteriaceae_other, Blautia, Clostridiaceae_other, and members of Clostridium clusters IV and XIVa. These levels were significantly restored by the probiotic mixture. Importantly, most of the genera increased by cisplatin were significantly positively correlated with colonic 5-HT. Furthermore, in vitro, the probiotic mixture had direct inhibitory effects on the 5-HT secretion by EC cells. The probiotic mixture protects against cisplatin-induced intestine injury, exhibiting both anti-inflammatory and antiemetic properties. These results were closely related to the reestablishment of intestinal microbiota ecology and normalization of the dysbiosis-driven 5-HT overproduction.
Collapse
Affiliation(s)
- Yuanhang Wu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jianlin Wu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhikun Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qian Wang
- Liaoning CapitalBio Technology Co., Ltd., Dalian, China
| | - Ying Li
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Aman Wang
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiu Shan
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Li Y, Liu H, Qi H, Tang W, Zhang C, Liu Z, Liu Y, Wei X, Kong Z, Jia S, Du B, Yuan J, Wang C, Li M. Probiotic fermentation of Ganoderma lucidum fruiting body extracts promoted its immunostimulatory activity in mice with dexamethasone-induced immunosuppression. Biomed Pharmacother 2021; 141:111909. [PMID: 34328088 DOI: 10.1016/j.biopha.2021.111909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Ganoderma lucidum is a legendary traditional Chinese medicine with various bioactivities. This study was conducted (a) to explore the in vitro fermentation of the water extracts of G. lucidum fruiting body with Lactobacillus acidophilus and Bifidobacterium breve and (b) to investigate the effect of fermentation broth (GLFB) on dexamethasone (DEX)-induced immunosuppressed mice. Our results demonstrated that probiotic fermentation of G. lucidum fruiting body extracts underwent structural changing of major ganoderic acid components, such as ganoderic acid A (GA) into GC2, and this fermentation process involves changing of several metabolic pathways in the probiotic strains. GLFB could significantly improve the immunity, intestinal integrity, and gut microbiota dysbiosis in DEX-treated mice, and the immunostimulatory activity of GLFB was found closely related to its direct regulation on the expansion of CD4+ T cells in Peyer's patches of mice. These data implied that probiotic fermentation of G. lucidum fruiting body extracts promoted its immunostimulatory activity via biotransformation of components such as GA. This research provides a theoretical support for the development and application of G. lucidum fermentation by probiotics.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - He Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Huawen Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | - Wei Tang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Caihua Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhaiyi Liu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhen Kong
- Hefei Kangchuntang Pharmaceutical Co.,Ltd, Hefei, China
| | - Shangyi Jia
- Hefei Kangchuntang Pharmaceutical Co.,Ltd, Hefei, China
| | - Borong Du
- People's Hospital of Jiuquan City, Gansu, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
20
|
Li Y, Liu M, Liu H, Sui X, Liu Y, Wei X, Liu C, Cheng Y, Ye W, Gao B, Wang X, Lu Q, Cheng H, Zhang L, Yuan J, Li M. The Anti-Inflammatory Effect and Mucosal Barrier Protection of Clostridium butyricum RH2 in Ceftriaxone-Induced Intestinal Dysbacteriosis. Front Cell Infect Microbiol 2021; 11:647048. [PMID: 33842393 PMCID: PMC8027357 DOI: 10.3389/fcimb.2021.647048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed at determining the beneficial effect of Clostridium butyricum (CB) RH2 on ceftriaxone-induced dysbacteriosis. To this purpose, BALB/c mice were exposed to ceftriaxone (400 mg/ml) or not (control) for 7 days, and administered a daily oral gavage of low-, and high-dose CB RH2 (108 and 1010 CFU/ml, respectively) for 2 weeks. CB RH2 altered the diversity of gut microbiota, changed the composition of gut microbiota in phylum and genus level, decreased the F/B ratio, and decreased the pro-inflammatory bacteria (Deferribacteres, Oscillibacter, Desulfovibrio, Mucispirillum and Parabacteroides) in ceftriaxone-treated mice. Additionally, CB RH2 improved colonic architecture and intestinal integrity by improving the mucous layer and the tight junction barrier. Furthermore, CB RH2 also mitigated intestinal inflammation through decreasing proinflammatory factors (TNF-α and COX-2) and increasing anti-inflammatory factors (IL-10). CB RH2 had direct effects on the expansion of CD4+ T cells in Peyer’s patches (PPs) in vitro, which in turn affected their immune response upon challenge with ceftriaxone. All these data suggested that CB RH2 possessed the ability to modulate the intestinal mucosal and systemic immune system in limiting intestinal alterations to relieve ceftriaxone-induced dysbacteriosis.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Man Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xue Sui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chunzheng Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yiqin Cheng
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weikang Ye
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Binbin Gao
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xin Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qiao Lu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hao Cheng
- Marketing Department, Hangzhou Grand Biologic Pharmaceutical Inc., Hangzhou, China
| | - Lu Zhang
- Marketing Department, Hangzhou Grand Biologic Pharmaceutical Inc., Hangzhou, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|