1
|
Feng W, Tang H, Li C, Kong X, Ren X, Wang H. Whole transcriptome profiling of cardiac injury: insights from a neonatal mouse sepsis model. Genes Genomics 2025:10.1007/s13258-025-01632-z. [PMID: 40111648 DOI: 10.1007/s13258-025-01632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Neonatal sepsis is characterized by an excessive immune response, often leading to multiple organ failure, including cardiac injury, and is a major cause of morbidity and mortality in newborns. Understanding the molecular mechanisms of sepsis-induced cardiac injury is crucial for developing therapeutic strategies. OBJECTIVE To investigate transcriptomic changes and identify potential altered genes associated with cardiac injury in a neonatal sepsis model. METHODS A neonatal sepsis model was established by cecal slurry injection. RNA sequencing analysis was performed on cardiac tissues from sepsis and control groups, followed by functional enrichment analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Interaction networks among mRNA, lncRNA, circRNA, and miRNA were constructed, and key regulatory genes were identified through protein-protein interaction (PPI) analysis. RESULTS A total of 1537 differentially expressed mRNAs, 287 lncRNAs, and 730 circRNAs were identified. Functional analysis revealed significant involvement in immune response and inflammatory regulation. PPI network analysis identified six key genes-Ccl5, Il-6, Pole, Mcm2, Mcm5, Mcm10-that were significantly expressed in sepsis-induced cardiac tissue. Additionally, lncRNAs and circRNAs were found to participate in myocardial injury by regulating immune and inflammatory pathways. CONCLUSIONS This study identified six key genes involved in immune and inflammatory responses, playing critical roles in sepsis-induced cardiac injury in neonates. These findings provide new insights into the pathogenesis of sepsis-induced cardiac injury and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Wenjin Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Jining, 272000, China
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine (Affiliated Hospital of Jining Medical University), Jining, China
| | - Huanqi Tang
- Jining Medical University, Jining, 272000, China
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Jining, 272000, China
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine (Affiliated Hospital of Jining Medical University), Jining, China
| | - Chengshuai Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Jining, 272000, China
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine (Affiliated Hospital of Jining Medical University), Jining, China
| | - Xiaohui Kong
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Jining, 272000, China
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine (Affiliated Hospital of Jining Medical University), Jining, China
| | - Xueyun Ren
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China.
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China.
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Jining, 272000, China.
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine (Affiliated Hospital of Jining Medical University), Jining, China.
| | - Huabin Wang
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China.
- Department of Neonatal Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China.
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Jining, 272000, China.
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine (Affiliated Hospital of Jining Medical University), Jining, China.
| |
Collapse
|
2
|
Zhang X, Zhang W, Zhang H, Liao X. Sepsis subphenotypes: bridging the gaps in sepsis treatment strategies. Front Immunol 2025; 16:1546474. [PMID: 40013154 PMCID: PMC11862915 DOI: 10.3389/fimmu.2025.1546474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Sepsis, a heterogeneous illness produced by a dysregulated host response to infection, remains a severe mortality risk. Recent discoveries in sepsis research have stressed phenotyping as a feasible strategy for tackling heterogeneity and enhancing therapy precision. Sepsis phenotyping has moved from traditional stratifications based on severity and prognosis to dynamic, phenotype-driven therapeutic options. This review covers recent progress in connecting sepsis subgroups to personalized treatments, with a focus on phenotype-based therapeutic predictions and decision-support systems. Despite ongoing challenges, such as standardizing phenotyping frameworks and incorporating findings into clinical practice, this topic has enormous promise. By investigating phenotypic variation in therapy responses, we hope to uncover new biomarkers and phenotype-driven therapeutic solutions, laying the groundwork for more effective therapies and, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Critical Care Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Jans J, van Dun SCJ, Gorissen R, Pieterman RFA, Voskamp TS, Schoenmakers S, Taal HR, Unger WWJ. The monocyte-derived cytokine response in whole blood from preterm newborns against sepsis-related bacteria is similar to term newborns and adults. Front Immunol 2024; 15:1353039. [PMID: 38562936 PMCID: PMC10982322 DOI: 10.3389/fimmu.2024.1353039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Sepsis is characterized by a dysregulated innate immune response. It is a leading cause of morbidity and mortality in newborns, in particular for newborns that are born premature. Although previous literature indicate that the pro-inflammatory response may be impaired in preterm newborns, serum levels of monocyte-derived cytokines, such as TNF-α and IL-6, vary highly between newborns and can reach adult-like concentrations during sepsis. These contradictory observations and the severe consequences of neonatal sepsis in preterm newborns highlight the need for a better understanding of the pro-inflammatory cytokine response of preterm newborns to improve sepsis-related outcomes. Methods and results Using an in vitro model with multiple read outs at the transcriptional and protein level, we consistently showed that the monocyte-derived cytokine response induced by sepsis-related bacteria is comparable between preterm newborns, term newborns and adults. We substantiated these findings by employing recombinant Toll-like receptor (TLR) ligands and showed that the activation of specific immune pathways, including the expression of TLRs, is also similar between preterm newborns, term newborns and adults. Importantly, we showed that at birth the production of TNF-α and IL-6 is highly variable between individuals and independent of gestational age. Discussion These findings indicate that preterm newborns are equally capable of mounting a pro-inflammatory response against a broad range of bacterial pathogens that is comparable to term newborns and adults. Our results provide a better understanding of the pro-inflammatory response by preterm newborns and could guide the development of interventions that specifically modulate the pro-inflammatory response during sepsis in preterm newborns.
Collapse
Affiliation(s)
- Jop Jans
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Sven C. J. van Dun
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Renske Gorissen
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Roel F. A. Pieterman
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Tess S. Voskamp
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Hendrik Robert Taal
- Department of Neonatal and Paediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Rotterdam, Erasmus Medical Center - Sophia, Rotterdam, Netherlands
| |
Collapse
|
4
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Huang M, Atreya MR, Holder A, Kamaleswaran R. A MACHINE LEARNING MODEL DERIVED FROM ANALYSIS OF TIME-COURSE GENE-EXPRESSION DATASETS REVEALS TEMPORALLY STABLE GENE MARKERS PREDICTIVE OF SEPSIS MORTALITY. Shock 2023; 60:671-677. [PMID: 37752077 PMCID: PMC10662606 DOI: 10.1097/shk.0000000000002226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis is associated with significant mortality and morbidity among critically ill patients admitted to intensive care units and represents a major health challenge globally. Given the significant clinical and biological heterogeneity among patients and the dynamic nature of the host immune response, identifying those at high risk of poor outcomes remains a critical challenge. Here, we performed secondary analysis of publicly available time-series gene-expression datasets from peripheral blood of patients admitted to the intensive care unit to elucidate temporally stable gene-expression markers between sepsis survivors and nonsurvivors. Using a limited set of genes that were determined to be temporally stable, we derived a dynamical model using a Support Vector Machine classifier to accurately predict the mortality of sepsis patients. Our model had robust performance in a test dataset, where patients' transcriptome was sampled at alternate time points, with an area under the curve of 0.89 (95% CI, 0.82-0.96) upon 5-fold cross-validation. We also identified 7 potential biomarkers of sepsis mortality (STAT5A, CX3CR1, LCP1, SNRPG, RPS27L, LSM5, SHCBP1) that require future validation. Pending prospective testing, our model may be used to identify sepsis patients with high risk of mortality accounting for the dynamic nature of the disease and with potential therapeutic implications.
Collapse
Affiliation(s)
- Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| | - Mihir R. Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andre Holder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
6
|
Ng J, Marneth AE, Griffith A, Younger D, Ghanta S, Jiao A, Willis G, Han J, Imani J, Niu B, Keegan JW, Hancock B, Guo F, Shi Y, Perrella MA, Lederer JA. Mesenchymal Stromal Cells Facilitate Neutrophil-Trained Immunity by Reprogramming Hematopoietic Stem Cells. J Innate Immun 2023; 15:765-781. [PMID: 37797588 PMCID: PMC10622164 DOI: 10.1159/000533732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/20/2023] [Indexed: 10/07/2023] Open
Abstract
Novel therapeutics are urgently needed to prevent opportunistic infections in immunocompromised individuals undergoing cancer treatments or other immune-suppressive therapies. Trained immunity is a promising strategy to reduce this burden of disease. We previously demonstrated that mesenchymal stromal cells (MSCs) preconditioned with a class A CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) agonist, can augment emergency granulopoiesis in a murine model of neutropenic sepsis. Here, we used a chimeric mouse model to demonstrate that MSCs secrete paracrine factors that act on lineage-negative c-kit+ hematopoietic stem cells (HSCs), leaving them "poised" to enhance emergency granulopoiesis months after transplantation. Chimeric mice developed from HSCs exposed to conditioned media from MSCs and CpG-ODN-preconditioned MSCs showed significantly higher bacterial clearance and increased neutrophil granulopoiesis following lung infection than control mice. By Cleavage Under Targets and Release Using Nuclease (CUT&RUN) chromatin sequencing, we identified that MSC-conditioned media leaves H3K4me3 histone marks in HSCs at genes involved in myelopoiesis and in signaling persistence by the mTOR pathway. Both soluble factors and extracellular vesicles from MSCs mediated these effects on HSCs and proteomic analysis by mass spectrometry revealed soluble calreticulin as a potential mediator. In summary, this study demonstrates that trained immunity can be mediated by paracrine factors from MSCs to induce neutrophil-trained immunity by reprogramming HSCs for long-lasting functional changes in neutrophil-mediated antimicrobial immunity.
Collapse
Affiliation(s)
- Julie Ng
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Anna E. Marneth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Daniel Younger
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alan Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gareth Willis
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Junwen Han
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bailin Niu
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Joshua W. Keegan
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brandon Hancock
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fei Guo
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Ramos RB, Martino N, Chuy D, Lu S, Zuo MXG, Balasubramanian U, Di John Portela I, Vincent PA, Adam AP. Shock drives a STAT3 and JunB-mediated coordinated transcriptional and DNA methylation response in the endothelium. J Cell Sci 2023; 136:jcs261323. [PMID: 37667913 PMCID: PMC10560554 DOI: 10.1242/jcs.261323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
Endothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses. Furthermore, SOCS3 loss leads to an aggravation of the responses, demonstrating a causal role for the STAT3-SOCS3 signaling axis in the acute endothelial response to LPS. Experiments in cultured endothelial cells demonstrate that IL-6 mediates this response. Furthermore, bioinformatics analysis of in vivo and in vitro transcriptomics and epigenetics suggests a role for STAT, AP1 and interferon regulatory family (IRF) transcription factors. Knockdown of STAT3 or the AP1 member JunB partially prevents the changes in gene expression, demonstrating a role for these transcription factors. In conclusion, endothelial cells respond with a coordinated response that depends on overactivated IL-6 signaling via STAT3, JunB and possibly other transcription factors. Our findings provide evidence for a critical role of IL-6 signaling in regulating shock-induced epigenetic changes and sustained endothelial activation, offering a new therapeutic target to limit vascular dysfunction.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Dareen Chuy
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Mei Xing G. Zuo
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Uma Balasubramanian
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
- Department of Ophthalmology, Albany Medical Center, Albany, NY 12208, USA
| |
Collapse
|
8
|
Phuengmaung P, Khiewkamrop P, Makjaroen J, Issara-Amphorn J, Boonmee A, Benjaskulluecha S, Ritprajak P, Nita-Lazar A, Palaga T, Hirankarn N, Leelahavanichkul A. Less Severe Sepsis in Cecal Ligation and Puncture Models with and without Lipopolysaccharide in Mice with Conditional Ezh2-Deleted Macrophages (LysM-Cre System). Int J Mol Sci 2023; 24:ijms24108517. [PMID: 37239864 DOI: 10.3390/ijms24108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Despite a previous report on less inflammatory responses in mice with an absence of the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, using a lipopolysaccharide (LPS) injection model, proteomic analysis and cecal ligation and puncture (CLP), a sepsis model that more resembles human conditions was devised. As such, analysis of cellular and secreted protein (proteome and secretome) after a single LPS activation and LPS tolerance in macrophages from Ezh2 null (Ezh2flox/flox; LysM-Crecre/-) mice (Ezh2 null) and the littermate control mice (Ezh2fl/fl; LysM-Cre-/-) (Ezh2 control) compared with the unstimulated cells from each group indicated fewer activities in Ezh2 null macrophages, especially by the volcano plot analysis. Indeed, supernatant IL-1β and expression of genes in pro-inflammatory M1 macrophage polarization (IL-1β and iNOS), TNF-α, and NF-κB (a transcription factor) were lower in Ezh2 null macrophages compared with the control. In LPS tolerance, downregulated NF-κB compared with the control was also demonstrated in Ezh2 null cells. In CLP sepsis mice, those with CLP alone and CLP at 2 days after twice receiving LPS injection, representing sepsis and sepsis after endotoxemia, respectively, symptoms were less severe in Ezh2 null mice, as indicated by survival analysis and other biomarkers. However, the Ezh2 inhibitor improved survival only in CLP, but not LPS with CLP. In conclusion, an absence of Ezh2 in macrophages resulted in less severe sepsis, and the use of an Ezh2 inhibitor might be beneficial in sepsis.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phuriwat Khiewkamrop
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Chen H, Zhang X, Su H, Zeng J, Chan H, Li Q, Liu X, Zhang L, Wu WKK, Chan MTV, Chen H. Immune dysregulation and RNA N6-methyladenosine modification in sepsis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1764. [PMID: 36149809 DOI: 10.1002/wrna.1764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by the host immune dysregulation to infection. It is a highly heterogeneous syndrome with complex pathophysiological mechanisms. The host immune response to sepsis can be divided into hyper-inflammatory and immune-suppressive phases which could exist simultaneously. In the initial stage, systemic immune response is activated after exposure to pathogens. Both innate and adaptive immune cells undergo epigenomic, transcriptomic, and functional reprogramming, resulting in systemic and persistent inflammatory responses. Following the hyper-inflammatory phase, the body is in a state of continuous immunosuppression, which is related to immune cell apoptosis, metabolic failure, and epigenetic reprogramming. Immunosuppression leads to increased susceptibility to secondary infections in patients with sepsis. RNA N6-Methyladenosine (m6A) has been recognized as an indispensable epitranscriptomic modification involved in both physiological and pathological processes. Recent studies suggest that m6A could reprogram both innate and adaptive immune cells through posttranscriptional regulation of RNA metabolism. Dysregulated m6A modifications contribute to the pathogenesis of immune-related diseases. In this review, we summarize immune cell changes and the potential role of m6A modification in sepsis. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Su
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Judeng Zeng
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Li
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
The Regulatory Roles of Ezh2 in Response to Lipopolysaccharide (LPS) in Macrophages and Mice with Conditional Ezh2 Deletion with LysM-Cre System. Int J Mol Sci 2023; 24:ijms24065363. [PMID: 36982437 PMCID: PMC10049283 DOI: 10.3390/ijms24065363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The responses of macrophages to lipopolysaccharide (LPS) might determine the direction of clinical manifestations of sepsis, which is the immune response against severe infection. Meanwhile, the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, might interfere with LPS response. Transcriptomic analysis on LPS-activated wild-type macrophages demonstrated an alteration of several epigenetic enzymes. Although the Ezh2-silencing macrophages (RAW264.7), using small interfering RNA (siRNA), indicated a non-different response to the control cells after a single LPS stimulation, the Ezh2-reducing cells demonstrated a less severe LPS tolerance, after two LPS stimulations, as determined by the higher supernatant TNF-α. With a single LPS stimulation, Ezh2 null (Ezh2flox/flox; LysM-Crecre/−) macrophages demonstrated lower supernatant TNF-α than Ezh2 control (Ezh2fl/fl; LysM-Cre−/−), perhaps due to an upregulation of Socs3, which is a suppressor of cytokine signaling 3, due to the loss of the Ezh2 gene. In LPS tolerance, Ezh2 null macrophages indicated higher supernatant TNF-α and IL-6 than the control, supporting an impact of the loss of the Ezh2 inhibitory gene. In parallel, Ezh2 null mice demonstrated lower serum TNF-α and IL-6 than the control mice after an LPS injection, indicating a less severe LPS-induced hyper-inflammation in Ezh2 null mice. On the other hand, there were similar serum cytokines after LPS tolerance and the non-reduction of serum cytokines after the second dose of LPS, indicating less severe LPS tolerance in Ezh2 null mice compared with control mice. In conclusion, an absence of Ezh2 in macrophages resulted in less severe LPS-induced inflammation, as indicated by low serum cytokines, with less severe LPS tolerance, as demonstrated by higher cytokine production, partly through the upregulated Socs3.
Collapse
|
11
|
Harkless R, Singh K, Christman J, McCarty A, Sen C, Jalilvand A, Wisler J. Microvesicle-Mediated Transfer of DNA Methyltransferase Proteins Results in Recipient Cell Immunosuppression. J Surg Res 2023; 283:368-376. [PMID: 36427447 PMCID: PMC10862496 DOI: 10.1016/j.jss.2022.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/29/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Patients with sepsis exhibit significant, persistent immunologic dysfunction. Evidence supports the hypothesis that epigenetic regulation of key cytokines plays an important role in this dysfunction. In sepsis, circulating microvesicles (MVs) containing elevated levels of DNA methyltransferase (DNMT) mRNA cause gene methylation and silencing in recipient cells. We sought to examine the functional role of MV DNMT proteins in this immunologic dysfunction. METHODS In total, 33 patients were enrolled within 24 h of sepsis diagnosis (23 sepsis, 10 critically ill controls). Blood and MVs were collected on days 1, 3, and 5 of sepsis, and protein was isolated from the MVs. Levels of DNMT protein and activity were quantified. MVs were produced in vitro by stimulating naïve monocytes with lipopolysaccharide. Methylation was assessed using bisulfate site-specific qualitative real-time polymerase chain reaction. RESULTS The size of MVs in the patients with sepsis decreased from days 1 to 5 compared to the control group. Circulating MVs contained significantly higher levels of DNMT 1 and 3A, protein. We recapitulated the production of these DNMT-containing MVs in vitro by treating monocytes with lipopolysaccharide. We found that exposing naïve monocytes to these MVs resulted in increased promoter methylation of tumor necrosis factor alpha. CONCLUSIONS An analysis of the isolated MVs revealed higher levels of DNMT proteins in septic patients than those in nonseptic patients. Exposing naïve monocytes to DNMT-containing MVs produced in vitro resulted in hypermethylation of tumor necrosis factor alpha, a key cytokine implicated in postsepsis immunosuppression. These results suggest that DNMT-containing MVs cause epigenetic changes in recipient cells. This study highlights a novel role for MVs in the immune dysfunction of patients with sepsis.
Collapse
Affiliation(s)
- Ryan Harkless
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - John Christman
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Adara McCarty
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Chandan Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anahita Jalilvand
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio
| | - Jon Wisler
- Ohio State University Wexner Medical Center, Department of Surgery, Columbus, Ohio.
| |
Collapse
|
12
|
Kang Y, Tang D, Lan L, Zhou H. Editorial: Sepsis: Basic, Clinical and Therapeutic Approaches. Front Pharmacol 2022; 13:910332. [PMID: 35645807 PMCID: PMC9131450 DOI: 10.3389/fphar.2022.910332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yan Kang
- Department of Critical Care Medicine, Institute of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China Tianfu Hospital, Sichuan Universities, Chengdu, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Lefu Lan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong Zhangjiang Hi-Tech Park, Shanghai, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Lang X, Shen L, Zhu T, Zhao W, Chen Y, Zhu C, Su Q, Wang C, Wang Y, Neri F, Jiang H, Chen J. Role of Age-Related Changes in DNA Methylation in the Disproportionate Susceptibility and Worse Outcomes of Sepsis in Older Adults. Front Med (Lausanne) 2022; 9:822847. [PMID: 35242787 PMCID: PMC8886726 DOI: 10.3389/fmed.2022.822847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis, a complex multisystem disorder, is among the top causes of hospitalization and mortality in older adults. However, the mechanisms underlying the disproportionate susceptibility to sepsis and worse outcomes in the elderly are not well understood. Recently, changes in DNA methylation have been shown to be linked to aging processes and age-related diseases. Thus, we postulated that age-related changes in DNA methylation may play a role in the onset and prognosis of sepsis in elderly patients. Here, we performed genome-wide methylation profiling of peripheral blood from patients with sepsis and controls. Among the CpG sites whose methylation changes may contribute to an increase in sepsis susceptibility or mortality, 241 sites that possessed age-related changes in DNA methylation in controls may partly explain the increased risk of sepsis in older adults, and 161 sites whose methylation significantly correlated with age in sepsis group may be the potential mechanisms underlying the worse outcomes of elderly septic patients. Finally, an independent cohort was used to validate our findings. Together, our study demonstrates that age-related changes in DNA methylation may explain in part the disproportionate susceptibility and worse outcomes of sepsis in older adults.
Collapse
Affiliation(s)
- Xiabing Lang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Lingling Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenjun Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yang Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Chaohong Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qun Su
- Critical Care Medicine Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Francesco Neri
- Life Sciences and Systems Biology Department, University of Turin, Turin, Italy
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
14
|
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants (Basel) 2021; 11:antiox11010003. [PMID: 35052507 PMCID: PMC8772830 DOI: 10.3390/antiox11010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|