1
|
Chen J, Fu J, Liu J, Lu Y, Han D, Zeng J, Zou Z, Li Q, Zhang K, Wei X, Li L, Gu Z. The Association of Systemic Immune Inflammation Index (SII) and Platelet-to-Lymphocyte Ratio (PLR) on Coagulopathy and Prognosis in Patients with Traumatic Brain Injury. J Inflamm Res 2025; 18:5637-5653. [PMID: 40309307 PMCID: PMC12042205 DOI: 10.2147/jir.s512018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/22/2025] [Indexed: 05/02/2025] Open
Abstract
Objective We aimed to investigate the associations between inflammatory immune indicators, specifically systemic immune inflammation index (SII), platelet-to-lymphocyte ratio (PLR) and the coagulopathy and prognosis of traumatic brain injury (TBI) patients in ICU. Methods One hundred sixty-one TBI patients were grouped into four groups. The outcomes included TBI-related coagulopathy and prognosis at six months after discharge. The association between SII, PLR and coagulopathy, and prognosis in TBI patients was elucidated by applying trend analysis, sensibility analysis, spearman correlation, restricted cubic splines and so on. Results Sixty-four (39.75%) of 161 TBI patients were diagnosed with coagulopathy. In the unadjusted model, TBI patients in the lowest quarter of SII (≤966.60) and PLR levels (≤97.99) had a higher risk of coagulopathy than those in the highest quarter of SII (≥3096.16) [OR 0.169 (95% CI 0.052-0.547)] and PLR (≥255.39) [OR 0.098 (95% CI 0.028-0.340)]. After adjusting for covariates, the significant negative associations of results remained consistent in the sensitivity analyses. Restricted cubic splines revealed that an almost linear relationship between SII, PLR and coagulopathy risk and poor prognosis (P for all nonlinearities > 0.05). Finally, receiver operating characteristic (ROC) curves indicated that the SII and PLR had certain diagnostic and predictive values for TBI-related coagulopathy [AUC(SII) = 0.666 (95% CI 0.566-0.766), AUC(PLR) = 0.752 (95% CI 0.662-0.842)] and prognosis [AUC(SII) = 0.657 (95% CI 0.548-0.766), AUC(PLR) = 0.700 (95% CI 0.596-0.805)]. The stratification of isolated TBI and TBI with multi-trauma does not affect SII and PLR in predicting TBI-related coagulopathy and poor prognosis in the subgroup analysis (P > 0.05). Conclusion This study demonstrated that the SII and PLR had a significant correlation with coagulopathy risk and prognosis at 6 months after discharge. SII and PLR were predictive of coagulopathy and poor prognosis, specifically PLR value. It suggests that the SII and PLR might be promising biomarkers for predicting TBI-related coagulopathy and prognosis. Trial Registration The study was registered in the ethics committee of the Third Affiliated Hospital of Southern Medical University (2024-ER-005).
Collapse
Affiliation(s)
- Jiali Chen
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiahui Fu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiazhuo Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yin Lu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Dong Han
- Department of Quality Control and Evaluation, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiaxuan Zeng
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Kun Zhang
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiucai Wei
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Li Li
- Department of Emergency Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, People’s Republic of China
- Department of Trauma and War Wound Center, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, People’s Republic of China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Duchez AC, Arthaud CA, Eyraud MA, Prier A, Heestermans M, Hamzeh-Cognasse H, Cognasse F. The composition of single-donor apheresis platelet concentrates is influenced by the age of the donor. Sci Rep 2025; 15:13505. [PMID: 40251396 PMCID: PMC12008385 DOI: 10.1038/s41598-025-97916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The aging population often faces health issues that sometimes necessitate transfusions. Transfusion services are increasingly concerned about the rising number of transfusions and the aging donor population, as both factors are crucial in maintaining the quality of blood donations. In this context, our study aims to measure the bioactive molecule cytokine levels in single donor apheresis platelet concentrates (SDA-PC) based on the donor's age and to determine whether these cytokines, in conjunction with the donor age, could contribute to transfusion adverse reactions (AR). Our findings indicate that well-known platelet molecules such as sCD62P, as well as IL-13, ADAMTS13, MIP-1α, NGAL, MCP-3, HSAA, GDF-15, CX3CL1, and MDC, were present in SDA-PC. Levels of MIP-1α, GDF-15, and sCD62P increased with donor aging, whereas levels of MDC decreased. In conclusion, most of the cytokine levels detected were elevated in cases of AR and with increasing donor age. Notably, GDF-15 was the only cytokine that showed a positive correlation with age in the context of AR.
Collapse
Affiliation(s)
- Anne-Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France.
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Amélie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Marco Heestermans
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| |
Collapse
|
3
|
Luka N, South K, Jones R, Unsworth AJ, Coutts G, Mosneag I, Younas M, Bradley A, Wong SY, Collins E, Quigley C, Knight SB, McColl BW, McCulloch L, Grainger JR, Smith CJ, Allan SM. The Role of the VWF/ADAMTS13 Axis in the Thromboinflammatory Response in Ischemic Stroke After SARS-CoV2 Infection. Brain Behav 2025; 15:e70348. [PMID: 39972966 PMCID: PMC11839761 DOI: 10.1002/brb3.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND SARS-CoV2 infections increase the risk of ischemic stroke (IS), potentially through a thromboinflammatory cascade driven by an imbalance in the ratio of Von Willebrand Factor (VWF) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), leading to the formation of ultra-large VWF (UL-VWF). However, the SARS-CoV2 infection's contribution to any VWF/ADAMTS13 axis imbalance and the subsequent thromboinflammatory response post-stroke remain poorly understood. METHODS We performed a detailed thromboinflammatory profile of the plasma samples from three experimental cohorts matched by age, sex, and stroke severity: non-stroke controls (n = 23), SARS-CoV2 negative IS (n = 22), and SARS-CoV2 positive IS (n = 24). SARS-CoV2 positive IS patients presented varying degrees of infection severity. RESULTS We observed an increase in VWF and UL-VWF and a decrease in ADAMTS13 in the SARS-CoV2 positive IS cohort, suggesting a VWF/ADAMTS13 axis imbalance. Interleukin-6 (IL-6) levels were positively correlated with VWF and negatively correlated with ADAMTS13, suggesting that IL-6 may drive this imbalance. Fibrinogen and D-Dimers were elevated in SARS-CoV2 negative IS cohort and SARS-CoV2 positive IS cohort, but D-Dimers were within the normal range, indicating no disseminated intravascular coagulation. Factor IX (FIX) was elevated in the SARS-CoV2 negative IS cohort. Tissue plasminogen activator (tPA) was elevated in the SARS-CoV2 positive IS cohort, suggesting no fibrinolysis defects. Matrix Metalloproteinase-2 (MMP-2) and soluble Intracellular Adhesion Molecule-1 (sICAM-1) were elevated in the SARS-CoV2 negative IS cohort. CONCLUSIONS We show that SARS-CoV2 infections drive a VWF/ADAMTS13 axis imbalance, inducing an increase in tPA while decreasing FIX, MMP-2, and sICAM-1 post-stroke.
Collapse
Affiliation(s)
- Nadim Luka
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Kieron South
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Rachel Jones
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of Cardiovascular SciencesThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Amanda J. Unsworth
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Graham Coutts
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Ioana‐Emilia Mosneag
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
| | - Mehwish Younas
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Amy Bradley
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Siew Yan Wong
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Ellen Collins
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Chloe Quigley
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Sean B. Knight
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Division of Immunology, Immunity to Infection and Respiratory MedicineThe University of ManchesterManchesterUK
| | - Barry W. McColl
- UK Dementia Research Institute, Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and RepairThe University of EdinburghEdinburghUK
| | - John R. Grainger
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Division of Immunology, Immunity to Infection and Respiratory MedicineThe University of ManchesterManchesterUK
| | - Craig J. Smith
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of Cardiovascular SciencesThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Stuart M. Allan
- Geoffrey Jefferson Brain Research Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
- Division of NeuroscienceThe University of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthManchester Academic Health Science Centre, The University of ManchesterManchesterUK
| |
Collapse
|
4
|
La Rosa F, Montecucco F, Liberale L, Sessarego M, Carbone F. Venous thrombosis and obesity: from clinical needs to therapeutic challenges. Intern Emerg Med 2025; 20:47-64. [PMID: 39269539 PMCID: PMC11794390 DOI: 10.1007/s11739-024-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Weight bias and stigma have limited the awareness of the systemic consequences related to obesity. As the narrative evolves, obesity is emerging as a driver and enhancer of many pathological conditions. Among these, the risk of venous thromboembolism (VTE) is a critical concern linked to obesity, ranking as the third most common cardiovascular condition. Obesity is recognized as a multifactorial risk factor for VTE, influenced by genetic, demographic, behavioral, and socio-economic conditions. Despite established links, the exact incidence of obesity related VTE in the general population remains largely unknown. The complexity of distinguishing between provoked and unprovoked VTE, coupled with gaps in obesity definition and assessment still complicates a tailored risk assessment of VTE risk. Obesity reactivity, hypercoagulability, and endothelial dysfunction are driven by the so-called 'adiposopathy'. This state of chronic inflammation and metabolic disturbance amplifies thrombin generation and alters endothelial function, promoting a pro-thrombotic environment. Additionally, the inflammation-induced clot formation-also referred to as 'immunothrombosis' further exacerbates VTE risk in people living with obesity. Furthermore, current evidence highlights significant gaps in the management of obesity related VTE, particularly concerning prophylaxis and treatment efficacy of anticoagulants in people living with obesity. This review underscores the need for tailored therapeutic approaches and well-designed clinical trials to address the unique challenges posed by obesity in VTE prevention and management. Advanced research and innovative strategies are imperative to improve outcomes and reduce the burden of VTE in people living with obesity.
Collapse
Affiliation(s)
- Federica La Rosa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Marta Sessarego
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
5
|
Hafez W, Rashid A, Abuelsaoud HM, Jose M, Kishk S, Gador M, Emoshe T, Abdulaal F, Nair N, Ahmad M, Rashid VJ, Faheem Y, John S, Ahmed S, Daraghmi A, Soliman R, Abdelrahman A, Mohamed AA, Ghanem M. Evaluating the potential mediating role of ADAMTS13 activity in the relationship between obesity and the severity of COVID-19: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e37806. [PMID: 38608066 PMCID: PMC11018207 DOI: 10.1097/md.0000000000037806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and low enzyme A disintegrin and metalloproteinase with thrombospondin type-1 motif-13 (ADAMTS13) activity have been linked to poor coronavirus disease 2019 (COVID-19). Given that obesity may influence ADAMTS13 activity, it is feasible; however, it remains unclear whether ADAMTS13 activity acts as a mediator between obesity and COVID-19 outcomes. We investigated the link between body mass index (BMI) and COVID-19 outcomes, using ADAMTS13 activity as a mediator. ADAMTS13 activity was measured in 86 hospitalized COVID-19 patients. BMI, ADAMTS13 activity, and COVID-19 outcomes were assessed. Obese patients had a high odds ratio for low ADAMTS13 levels. When different levels of ADAMTS13 activity were considered, the severity of COVID-19 in obese patients was 4.5 times that in the normal BMI group. Furthermore, increased coagulopathy indicators correlated with low ADAMTS13 activity. Patients with elevated ALT and AST levels showed a 3 to 4-fold increase in the chances of low ADAMTS13 activity (OR:3.19, 95% CI:1.22-8.90, P = .021; OR:2.17, 95% CI:0.91-5.27, P = .082, respectively). When ADAMTS13 activity was considered, obese patients had greater COVID-19 severity and slower viral clearance than those with normal BMI. Low ADAMTS13 activity and impaired liver function are associated with poor COVID-19 outcomes. These findings encourage researchers to use molecular component identification to study the effects of obesity on the von Willebrand factor (VWF)/ADAMTS13 axis, COVID-19 pathogenesis, and outcomes.
Collapse
Affiliation(s)
- Wael Hafez
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
- Internal Medicine Department, Medical Research and Clinical Studies Institute; The National Research Centre, Cairo, Egypt
| | - Asrar Rashid
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | | | - Mohan Jose
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Samy Kishk
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Muneir Gador
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | | | - Fatema Abdulaal
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Nivedita Nair
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Muhammad Ahmad
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | | | - Youmna Faheem
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Steffi John
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Sabah Ahmed
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Ahmed Daraghmi
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| | - Rami Soliman
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
- National Institute of Chest and Allergy, Egypt
| | - Ahmed Abdelrahman
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
- Internal Medicine Department, Zagazig Faculty of Medicine, Zagazig, Egypt
| | - Ahmed Ali Mohamed
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
- Intensive Care Department, Theodor Bilharz Research Institute, AL Warak, Giza Governorate, Egypt
| | - Mirvat Ghanem
- NMC Royal Hospital, Khalifa City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Favaloro EJ. The Role of the von Willebrand Factor Collagen-Binding Assay (VWF:CB) in the Diagnosis and Treatment of von Willebrand Disease (VWD) and Way Beyond: A Comprehensive 36-Year History. Semin Thromb Hemost 2024; 50:43-80. [PMID: 36807283 DOI: 10.1055/s-0043-1763259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The von Willebrand factor (VWF) collagen binding (VWF:CB) assay was first reported for use in von Willebrand diagnostics in 1986, by Brown and Bosak. Since then, the VWF:CB has continued to be used to help diagnose von Willebrand disease (VWD) (correctly) and also to help assign the correct subtype, as well as to assist in the monitoring of VWD therapy, especially desmopressin (DDAVP). However, it is important to recognize that the specific value of any VWF:CB is predicated on the use of an optimized VWF:CB, and that not all VWF:CB assays are so optimized. There are some good commercial assays available, but there are also some "not-so-good" commercial assays available, and these may continue to give the VWF:CB "a bad reputation." In addition to VWD diagnosis and management, the VWF:CB found purpose in a variety of other applications, from assessing ADAMTS13 activity, to investigation into acquired von Willebrand syndrome (especially as associated with use of mechanical circulatory support or cardiac assist devices), to assessment of VWF activity in disease states in where an excess of high-molecular-weight VWF may accumulate, and lead to increased (micro)thrombosis risk (e.g., coronavirus disease 2019, thrombotic thrombocytopenic purpura). The VWF:CB turns 37 in 2023. This review is a celebration of the utility of the VWF:CB over this nearly 40-year history.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Seliga AK, Zabłocki K, Bandorowicz-Pikuła J. Palmitate Stimulates Expression of the von Willebrand Factor and Modulates Toll-like Receptors Level and Activity in Human Umbilical Vein Endothelial Cells (HUVECs). Int J Mol Sci 2023; 25:254. [PMID: 38203423 PMCID: PMC10779284 DOI: 10.3390/ijms25010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
An increased concentration of palmitate in circulation is one of the most harmful factors in obesity. The von Willebrand factor (vWF), a protein involved in haemostasis, is produced and secreted by the vascular endothelium. An increased level of vWF in obese patients is associated with thrombosis and cardiovascular disease. The aim of this study was to investigate a palmitate effect on vWF in endothelial cells and understand the mechanisms of palmitate-activated signalling. Human umbilical vein endothelial cells (HUVECs) incubated in the presence of palmitate, exhibited an increased VWF gene expression, vWF protein maturation, and stimulated vWF secretion. Cardamonin, a Nuclear Factor kappa B (NF-κB) inhibitor, abolished the palmitate effect on VWF expression. The inhibition of Toll-like receptor (TLR) 2 with C29 resulted in the TLR4 overactivation in palmitate-treated cells. Palmitate, in the presence of TLR4 inhibitor TAK-242, leads to a higher expression of TLR6, CD36, and TIRAP. The silencing of TLR4 resulted in an increase in TLR2 level and vice versa. The obtained results indicate a potential mechanism of obesity-induced thrombotic complication caused by fatty acid activation of NF-κB signalling and vWF upregulation and help to identify various compensatory mechanisms related to TLR4 signal transduction.
Collapse
Affiliation(s)
| | | | - Joanna Bandorowicz-Pikuła
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw, Poland; (A.K.S.); (K.Z.)
| |
Collapse
|
8
|
LaCroix IS, Cralley A, Moore EE, Cendali FI, Dzieciatkowska M, Hom P, Mitra S, Cohen M, Silliman C, Sauaia A, Hansen KC, D’Alessandro A. Omics Signatures of Tissue Injury and Hemorrhagic Shock in Swine. Ann Surg 2023; 278:e1299-e1312. [PMID: 37334680 PMCID: PMC10728352 DOI: 10.1097/sla.0000000000005944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Advanced mass spectrometry methods were leveraged to analyze both proteomics and metabolomics signatures in plasma upon controlled tissue injury (TI) and hemorrhagic shock (HS)-isolated or combined-in a swine model, followed by correlation to viscoelastic measurements of coagulopathy via thrombelastography. BACKGROUND TI and HS cause distinct molecular changes in plasma in both animal models and trauma patients. However, the contribution to coagulopathy of trauma, the leading cause of preventable mortality in this patient population remains unclear. The recent development of a swine model for isolated or combined TI+HS facilitated the current study. METHODS Male swine (n=17) were randomized to either isolated or combined TI and HS. Coagulation status was analyzed by thrombelastography during the monitored time course. The plasma fractions of the blood draws (at baseline; end of shock; and at 30 minutes, 1, 2, and 4 hours after shock) were analyzed by mass spectrometry-based proteomics and metabolomics workflows. RESULTS HS-isolated or combined with TI-caused the most severe omic alterations during the monitored time course. While isolated TI delayed the activation of coagulation cascades. Correlation to thrombelastography parameters of clot strength (maximum amplitude) and breakdown (LY30) revealed signatures of coagulopathy which were supported by analysis of gene ontology-enriched biological pathways. CONCLUSION The current study provides a comprehensive characterization of proteomic and metabolomic alterations to combined or isolated TI and HS in a swine model and identifies early and late omics correlates to viscoelastic measurements in this system.
Collapse
Affiliation(s)
- Ian S. LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Alexis Cralley
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest E. Moore
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO, USA
| | - Francesca I Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Hom
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Christopher Silliman
- Vitalant Research Institute, Denver, CO, USA
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Sauaia
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Setua S, Thangaraju K, Dzieciatkowska M, Wilkerson RB, Nemkov T, Lamb DR, Tagaya Y, Boyer T, Rowden T, Doctor A, D'Alessandro A, Buehler PW. Coagulation potential and the integrated omics of extracellular vesicles from COVID-19 positive patient plasma. Sci Rep 2022; 12:22191. [PMID: 36564503 PMCID: PMC9780627 DOI: 10.1038/s41598-022-26473-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.
Collapse
Affiliation(s)
- Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Derek R Lamb
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tori Boyer
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tobi Rowden
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA.
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Tarandovskiy ID, Buehler PW, Karnaukhova E. Sex-dependent balance between thrombin and plasmin generation in the presence of thrombomodulin. J Thromb Thrombolysis 2022; 55:566-570. [PMID: 36508084 DOI: 10.1007/s11239-022-02742-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Assessing simultaneous generation of thrombin (TG) and plasmin (PG) is an approach to evaluate the balance between coagulation and fibrinolysis with sensitivity to predict endogenous thrombin and plasmin generation. The addition of thrombomodulin (TM), provides the essential component for thrombin activation of protein C and thrombin-activatable fibrinolysis inhibitor. However, the influence of sex on the balance between TG and PG with and without TM addition has not been investigated to date. OBJECTIVES To investigate the possible sex-based differences in TG and PG in the presence and absence of TM. METHODS Simultaneous TG and PG were measured in plasma samples obtained from 17 males and 17 females upon tissue factor and tissue plasminogen activator addition. Thrombin- and plasmin-specific fluorogenic substrates Z-Gly-Gly-Arg-AMC and Boc-Glu-Lys-Lys-AMC were used in the study. Thrombin and plasmin peak height (TPH and PPH) and production rate (TPR and PPR) values were determined. To evaluate the balance between TG and PG, the ratios between TPH and PPH (TPH/PPH) and TPR and PPR (TPR/PPR) were calculated. RESULTS AND CONCLUSIONS TPH between males and females demonstrated significant difference regardless of TM addition. TPR demonstrated differences between males and females only upon TM addition, while PG parameters was not dependent on the sex of the donor. TM significantly lowered TPH/PPH in males, and enhanced TPR/PPR in females. Thus, TPH/PPH and TPR/PPR significantly differed between men and women. Our results indicate that TM may act differently in males and females by shifting the underlying TG/PG balance to fibrinolysis in males and to coagulation in females.
Collapse
Affiliation(s)
- Ivan D Tarandovskiy
- Hemostasis Branch, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, 20993, Silver Spring, MD, USA.
| | - Paul W Buehler
- Department of Pathology, The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland, Baltimore, MD, USA
| | - Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|