1
|
Prabhahar A, Batta A, Hatwal J, Kumar V, Ramachandran R, Batta A. Endothelial dysfunction in the kidney transplant population: Current evidence and management strategies. World J Transplant 2025; 15:97458. [PMID: 40104196 PMCID: PMC11612885 DOI: 10.5500/wjt.v15.i1.97458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The endothelium modulates vascular homeostasis owing to a variety of vasoconstrictors and vasodilators. Endothelial dysfunction (ED), characterized by impaired vasodilation, inflammation, and thrombosis, triggers future cardiovascular (CV) diseases. Chronic kidney disease, a state of chronic inflammation caused by oxidative stress, metabolic abnormalities, infection, and uremic toxins damages the endothelium. ED is also associated with a decline in estimated glomerular filtration rate. After kidney transplantation, endothelial functions undergo immediate but partial restoration, promising graft longevity and enhanced CV health. However, the anticipated CV outcomes do not happen due to various transplant-related and unrelated risk factors for ED, culminating in poor CV health and graft survival. ED in kidney transplant recipients is an under-recognized and poorly studied entity. CV diseases are the leading cause of death among kidney transplant candidates with functioning grafts. ED contributes to the pathogenesis of many of the CV diseases. Various biomarkers and vasoreactivity tests are available to study endothelial functions. With an increasing number of transplants happening every year, and improved graft rejection rates due to the availability of effective immunosuppressants, the focus has now shifted to endothelial protection for the prevention, early recognition, and treatment of CV diseases.
Collapse
Affiliation(s)
- Arun Prabhahar
- Department of Telemedicine (Internal Medicine and Nephrology), Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akshey Batta
- Department of Urology and Renal Transplant, Neelam Hospital, Rajpura 140401, Punjab, India
| | - Juniali Hatwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
2
|
Barbosa GSB, Câmara NOS, Ledesma FL, Duarte Neto AN, Dias CB. Vascular injury in glomerulopathies: the role of the endothelium. FRONTIERS IN NEPHROLOGY 2024; 4:1396588. [PMID: 39780910 PMCID: PMC11707422 DOI: 10.3389/fneph.2024.1396588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
In glomerulopathies, endothelial dysfunction and the presence of histological vascular lesions such as thrombotic microangiopathy, arteriolar hyalinosis, and arteriosclerosis are related to a severe clinical course and worse renal prognosis. The endothelial cell, which naturally has anti-inflammatory and anti-thrombotic regulatory mechanisms, is particularly susceptible to damage caused by various etiologies and can become dysfunctional due to direct/indirect injury or a deficiency of protective factors. In addition, endothelial regulation and protection involve participation of the complement system, factors related to angiogenesis, the renin-angiotensin system (RAS), endothelin, the glycocalyx, the coagulation cascade, interaction between these pathways, interactions between glomerular structures (the endothelium, mesangium, podocyte, and basement membrane) and interstitial structures (tubules, arterioles and small vessels). Dysregulation of those components is also associated with the progression of renal fibrosis, since endothelial cell damage promotes endothelial-to-mesenchymal transition. Although the potential mechanisms of vascular injury have been widely described in diabetic kidney disease, hypertensive nephrosclerosis, and hemolytic uremic syndrome, they require further elucidation in other glomerulopathies. A better understanding of the pathogenesis of vascular injury in patients with glomerular diseases could contribute to the development of specific treatments for such injury.
Collapse
Affiliation(s)
- Géssica Sabrine Braga Barbosa
- Renal Pathophysiology Laboratory, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | - Cristiane Bitencourt Dias
- Renal Pathophysiology Laboratory, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
3
|
Azoulay E, Zuber J, Bousfiha AA, Long Y, Tan Y, Luo S, Essafti M, Annane D. Complement system activation: bridging physiology, pathophysiology, and therapy. Intensive Care Med 2024; 50:1791-1803. [PMID: 39254734 DOI: 10.1007/s00134-024-07611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
The complement system is a set of over 50 proteins that constitutes an essential part of the innate immune system. Complement system activation involves an organized proteolytic cascade. Overactivation of complement system activation is the main pathogenic mechanism of several diseases and contributes to the manifestations of many other conditions. This review describes the normal complement system and the role for complement dysregulation in critical illnesses, notably sepsis and acute respiratory distress syndrome. Complement activation is involved in the immune system response to pathogens but, when excessive, can contribute to tissue damage, runaway inflammation, and capillary leakage syndrome. Complement overactivation may play a key role in severe forms of coronavirus disease 2019 (COVID-19). Two diseases whose manifestations are mainly caused by complement overactivation, namely, atypical hemolytic and uremic syndrome (aHUS) and myasthenia gravis, are discussed. A diagnostic algorithm for aHUS is provided. Early complement-inhibiting therapy has been proven effective. When renal transplantation is required, complement-inhibiting drugs can be used prophylactically to prevent aHUS recurrence. Similarly, acetylcholine-receptor autoantibody-positive generalized myasthenia gravis involves complement system overactivation and responds to complement inhibition. The two main complement inhibitors used in to date routine are eculizumab and ravulizumab. The main adverse event is Neisseria infection, which is rare and preventable, but can be fatal. The complement system is crucial to health but, when overactivated, can cause or contribute to disease. Effective complement inhibitors are now available, although additional data are required to determine optimal regimens. Further research is also needed to better understand the complement system, develop advanced diagnostic tools, and identify markers that allow the personalization of treatment strategies.
Collapse
Affiliation(s)
- Elie Azoulay
- Intensive Care Unit, Saint-Louis University Hospital, AP-HP, Paris Cité University, Paris, France.
| | - Julien Zuber
- Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker University Hospital, AP-HP, Paris, France
| | - Ahmed Aziz Bousfiha
- Department of Pediatric Infectious and Immunological Diseases, IbnRochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology, Inflammation and Allergy (LICIA), Casablanca, Morocco
- School of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
- Huashan Rare Diseases Center, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Diseases, Shanghai, PR China
| | - Meriem Essafti
- Intensive Care Department, Mother-Children Center, Mohamed VI University Hospital, Marrakech, Morocco
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, AP-HP, Garches, France
- Simone Veil School of Medicine, Versailles-Saint Quentin University, Paris-Saclay University, Versaillles, France
- Institut Hospitalo-Universitaire PROMETHEUS & Fédération Hospitalo-Universitaire SEPSIS, Paris-Saclay University, Saclay, France
- INSERM, Garches, France
| |
Collapse
|
4
|
Akbariansaravi A, Dekhne A, Dhamelia A, Mekhail M. Exploring the Intersection of Atypical Hemolytic Uremic Syndrome and Substance Use: A Comprehensive Narrative Review. Cureus 2024; 16:e71019. [PMID: 39507167 PMCID: PMC11540165 DOI: 10.7759/cureus.71019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by hemolytic anemia, renal failure, and thrombocytopenia. While the typical form of HUS is often associated with Shiga toxin-producing Escherichia coli (STEC) infections, atypical hemolytic uremic syndrome (aHUS) is caused by uncontrolled complement system activation, leading to endothelial damage, microthrombi formation, and other complications. Although aHUS is commonly linked to genetic mutations and infections, emerging evidence suggests that certain substances, particularly illicit drugs like heroin, cocaine, and ecstasy, can also trigger this condition, adding complexity to its diagnosis and management. This narrative review examines the mechanisms by which substance use can lead to aHUS, discusses its clinical presentation, and highlights the diagnostic challenges in distinguishing it from other thrombotic microangiopathies, such as thrombotic thrombocytopenic purpura (TTP) and STEC-HUS. A thorough literature search identified relevant case reports, case series, and observational studies, underscoring the need for genetic testing and complement assays to confirm aHUS in substance users. The review also explores the role of complement inhibitors, such as eculizumab and ravulizumab, which target the underlying pathophysiology and have shown promise in improving patient outcomes. However, the management of substance-induced aHUS remains challenging due to limited data, varying clinical presentations, and the need to optimize treatment protocols. Early recognition and tailored therapy are crucial for effective management. Further research is needed to refine diagnostic criteria, develop new therapeutic approaches, and improve care for patients with this under-recognized condition.
Collapse
Affiliation(s)
| | - Anushka Dekhne
- Internal Medicine, American University of Antigua, Antigua, ATG
| | - Archi Dhamelia
- Internal Medicine, MGM (Mahatma Gandhi Mission) Medical College, Navi Mumbai, IND
| | - Mario Mekhail
- Internal Medicine, Long Island Community Hospital, Patchogue, USA
- Intensive Care Unit, Ain Shams University, Cairo, EGY
| |
Collapse
|
5
|
Maritati F, La Manna G, Comai G. Response to "A Caution Against the Use of C5B-9 Endothelial Assay to Support Eculizumab Therapy". Kidney Int Rep 2024; 9:1538-1539. [PMID: 38707838 PMCID: PMC11068969 DOI: 10.1016/j.ekir.2024.02.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 05/07/2024] Open
Affiliation(s)
- Federica Maritati
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giorgia Comai
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Mubarak M, Raza A, Rashid R, Sapna F, Shakeel S. Thrombotic microangiopathy after kidney transplantation: Expanding etiologic and pathogenetic spectra. World J Transplant 2024; 14:90277. [PMID: 38576763 PMCID: PMC10989473 DOI: 10.5500/wjt.v14.i1.90277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/15/2024] Open
Abstract
Thrombotic microangiopathy (TMA) is an uncommon but serious complication that not only affects native kidneys but also transplanted kidneys. This review is specifically focused on post-transplant TMA (PT-TMA) involving kidney transplant recipients. Its reported prevalence in the latter population varies from 0.8% to 14% with adverse impacts on both graft and patient survival. It has many causes and associations, and the list of etiologic agents and associations is growing constantly. The pathogenesis is equally varied and a variety of patho genetic pathways lead to the development of microvascular injury as the final common pathway. PT-TMA is categorized in many ways in order to facilitate its management. Ironically, more than one causes are contributory in PT-TMA and it is often difficult to pinpoint one particular cause in an individual case. Pathologically, the hallmark lesions are endothelial cell injury and intravascular thrombi affecting the microvasculature. Early diagnosis and classification of PT-TMA are imperative for optimal outcomes but are challenging for both clinicians and pathologists. The Banff classification has addressed this issue and has developed minimum diagnostic criteria for pathologic diagnosis of PT-TMA in the first phase. Management of the condition is also challenging and still largely empirical. It varies from simple maneuvers, such as plasmapheresis, drug withdrawal or modification, or dose reduction, to lifelong complement blockade, which is very expensive. A thorough understanding of the condition is imperative for an early diagnosis and quick treatment when the treatment is potentially effective. This review aims to increase the awareness of relevant stakeholders regarding this important, potentially treatable but under-recognized cause of kidney allograft dysfunction.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Amber Raza
- Department of Nephrology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Rahma Rashid
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Fnu Sapna
- Department of Pathology, Montefiore Medical Center, The University Hospital for Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Shaheera Shakeel
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
7
|
Dong L, Hu Y, Yang D, Liu L, Li Y, Ge S, Yao Y. Microangiopathy associated with poor outcome of immunoglobulin A nephropathy: a cohort study and meta-analysis. Clin Kidney J 2024; 17:sfae012. [PMID: 38333627 PMCID: PMC10851670 DOI: 10.1093/ckj/sfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 02/10/2024] Open
Abstract
Background Microangiopathy (MA) lesions are not rare in immunoglobulin A nephropathy (IgAN) and have been suggested to have a potential role in increasing risk in renal function decline. However, this suggestion has not been universally accepted. We aimed to investigate its role in our cohort and in multiple studies through a systematic meta-analysis. Methods This cohort study included 450 IgAN patients, confirmed by renal biopsy, at Tongji Hospital, China, from January 2012 to December 2016. Clinical data were collected and analysed. We systematically searched PubMed and Web of Science for studies investigating the association between MA lesions and IgAN. Results In our cohort, IgAN patients with MA were significantly older and had higher blood pressure, more proteinuria, worse kidney function and increased uric acid levels compared with patients without MA. When comparing pathological features with the non-MA group, the MA group exhibited more global glomerulosclerosis and interstitial fibrosis/tubular atrophy. MA lesions were independently associated with a composite kidney outcome in IgAN patients {adjusted hazard ratio 2.115 [95% confidence interval (CI) 1.035-4.320], P = .040}. Furthermore, this relationship was validated in a meta-analysis involving 2098 individuals from five independent cohorts. The combined data showed a 187% adjusted risk of poor renal outcome in IgAN patients with MA compared with patients without MA [adjusted risk ratio 2.87 (95% CI 2.05-4.02; I2 = 53%). Conclusion MA lesions could serve as a valuable predictor for disease progression in patients with IgAN, extending beyond the widely recognized Oxford MEST-C score.
Collapse
Affiliation(s)
- Lei Dong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncan Hu
- Division of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Dan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuwang Ge
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Gavriilaki E, Bousiou Z, Batsis I, Vardi A, Mallouri D, Koravou EE, Konstantinidou G, Spyridis N, Karavalakis G, Noli F, Patriarcheas V, Masmanidou M, Touloumenidou T, Papalexandri A, Poziopoulos C, Yannaki E, Sakellari I, Politou M, Papassotiriou I. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. Int J Mol Sci 2023; 25:231. [PMID: 38203404 PMCID: PMC10778584 DOI: 10.3390/ijms25010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) and graft-versus-host disease (GvHD) represent life-threatening syndromes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both conditions, endothelial dysfunction is a common denominator, and development of relevant biomarkers is of high importance for both diagnosis and prognosis. Despite the fact that soluble urokinase plasminogen activator receptor (suPAR) and growth differentiation factor-15 (GDF-15) have been determined as endothelial injury indices in various clinical settings, their role in HSCT-related complications remains unexplored. In this context, we used immunoenzymatic methods to measure suPAR and GDF-15 levels in HSCT-TMA, acute and/or chronic GVHD, control HSCT recipients, and apparently healthy individuals of similar age and gender. We found considerably greater SuPAR and GDF-15 levels in HSCT-TMA and GVHD patients compared to allo-HSCT and healthy patients. Both GDF-15 and suPAR concentrations were linked to EASIX at day 100 and last follow-up. SuPAR was associated with creatinine and platelets at day 100 and last follow-up, while GDF-15 was associated only with platelets, suggesting that laboratory values do not drive EASIX. SuPAR, but not GDF-15, was related to soluble C5b-9 levels, a sign of increased HSCT-TMA risk. Our study shows for the first time that suPAR and GDF-15 indicate endothelial damage in allo-HSCT recipients. Rigorous validation of these biomarkers in many cohorts may provide utility for their usefulness in identifying and stratifying allo-HSCT recipients with endothelial cell impairment.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Zoi Bousiou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Ioannis Batsis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Anna Vardi
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Despina Mallouri
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Evaggelia-Evdoxia Koravou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Georgia Konstantinidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Nikolaos Spyridis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Georgios Karavalakis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Foteini Noli
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Vasileios Patriarcheas
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Marianna Masmanidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Tasoula Touloumenidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Apostolia Papalexandri
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Christos Poziopoulos
- Department of Hematology, Metropolitan Hospital, Neo Faliro, 18547 Athens, Greece;
| | - Evangelia Yannaki
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Ioanna Sakellari
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioannis Papassotiriou
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
9
|
Goncharov NV, Avdonin PP, Voitenko NG, Voronina PA, Popova PI, Novozhilov AV, Blinova MS, Popkova VS, Belinskaia DA, Avdonin PV. Searching for New Biomarkers to Assess COVID-19 Patients: A Pilot Study. Metabolites 2023; 13:1194. [PMID: 38132876 PMCID: PMC10745512 DOI: 10.3390/metabo13121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
During the initial diagnosis of urgent medical conditions, which include acute infectious diseases, it is important to assess the severity of the patient's clinical state as quickly as possible. Unlike individual biochemical or physiological indicators, derived indices make it possible to better characterize a complex syndrome as a set of symptoms, and therefore quickly take a set of adequate measures. Recently, we reported on novel diagnostic indices containing butyrylcholinesterase (BChE) activity, which is decreased in COVID-19 patients. Also, in these patients, the secretion of von Willebrand factor (vWF) increases, which leads to thrombosis in the microvascular bed. The objective of this study was the determination of the concentration and activity of vWF in patients with COVID-19, and the search for new diagnostic indices. One of the main objectives was to compare the prognostic values of some individual and newly derived indices. Patients with COVID-19 were retrospectively divided into two groups: survivors (n = 77) and deceased (n = 24). According to clinical symptoms and computed tomography (CT) results, the course of disease was predominantly moderate in severity. The first blood sample (first point) was taken upon admission to the hospital, the second sample (second point)-within 4-6 days after admission. Along with the standard spectrum of biochemical indicators, BChE activity (BChEa or BChEb for acetylthiocholin or butyrylthiocholin, respectively), malondialdehyde (MDA), and vWF analysis (its antigen level, AGFW, and its activity, ActWF) were determined and new diagnostic indices were derived. The pooled sensitivity, specificity, and area under the receiver operating curve (AUC), as well as Likelihood ratio (LR) and Odds ratio (OR) were calculated. The level of vWF antigen in the deceased group was 1.5-fold higher than the level in the group of survivors. Indices that include vWF antigen levels are superior to indices using vWF activity. It was found that the index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) had the best discriminatory power to predict COVID-19 mortality (AUC = 0.91 [0.83, 1.00], p < 0.0001; OR = 72.0 [7.5, 689], p = 0.0002). In addition, [Urea] × 1000/(BChEb × [ALB]) was a good predictor of mortality (AUC = 0.95 [0.89, 1.00], p < 0.0001; OR = 31.5 [3.4, 293], p = 0.0024). The index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) was the best predictor of mortality associated with COVID-19 infection, followed by [Urea] × 1000/(BChEb × [ALB]). After validation in a subsequent cohort, these two indices could be recommended for diagnostic laboratories.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | | | - Artemy V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Maria S. Blinova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Victoria S. Popkova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| |
Collapse
|
10
|
Palomo M, Moreno-Castaño AB, Salas MQ, Escribano-Serrat S, Rovira M, Guillen-Olmos E, Fernandez S, Ventosa-Capell H, Youssef L, Crispi F, Nomdedeu M, Martinez-Sanchez J, De Moner B, Diaz-Ricart M. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front Med (Lausanne) 2023; 10:1285898. [PMID: 38034541 PMCID: PMC10682735 DOI: 10.3389/fmed.2023.1285898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The endothelium is a biologically active interface with multiple functions, some of them common throughout the vascular tree, and others that depend on its anatomical location. Endothelial cells are continually exposed to cellular and humoral factors, and to all those elements (biological, chemical, or hemodynamic) that circulate in blood at a certain time. It can adapt to different stimuli but this capability may be lost if the stimuli are strong enough and/or persistent in time. If the endothelium loses its adaptability it may become dysfunctional, becoming a potential real danger to the host. Endothelial dysfunction is present in multiple clinical conditions, such as chronic kidney disease, obesity, major depression, pregnancy-related complications, septic syndromes, COVID-19, and thrombotic microangiopathies, among other pathologies, but also in association with cell therapies, such as hematopoietic stem cell transplantation and treatment with chimeric antigen receptor T cells. In these diverse conditions, evidence suggests that the presence and severity of endothelial dysfunction correlate with the severity of the associated disease. More importantly, endothelial dysfunction has a strong diagnostic and prognostic value for the development of critical complications that, although may differ according to the underlying disease, have a vascular background in common. Our multidisciplinary team of women has devoted many years to exploring the role of the endothelium in association with the mentioned diseases and conditions. Our research group has characterized some of the mechanisms and also proposed biomarkers of endothelial damage. A better knowledge would provide therapeutic strategies either to prevent or to treat endothelial dysfunction.
Collapse
Affiliation(s)
- Marta Palomo
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Hematology External Quality Assessment Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Elena Guillen-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic de Barcelona, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Lina Youssef
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Wu X, Liszewski MK, Java A, Atkinson JP. Atypical hemolytic uremic syndrome: genetically-based insights into pathogenesis through an analysis of the complement regulator CD46. ANNALS OF BLOOD 2023; 8:27. [PMID: 39949759 PMCID: PMC11824723 DOI: 10.21037/aob-22-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
The complement system is a critical innate immune defense mechanism that also facilitates antigen recognition as well as antibody production through the adaptive immune response. Overall, complement activation contributes to the immune system's recognition and response to foreign pathogens and altered self. Regulating complement activation, particularly its powerful alternative pathway (AP) amplification loop, plays a key role in modulating tissue damage at sites of injury. Besides a predisposition to infections and autoimmunity (particularly systemic lupus erythematosus) in individuals deficient in activating components, variants in complement regulators are associated with multiple diseases including atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), and age-related macular degeneration (AMD). In particular, the pathogenesis of aHUS is commonly related to a rare heterozygous loss-of-function (LOF) mutation in the gene for complement factor H (CFH), CD46 [membrane cofactor protein (MCP)] or factor I (CFI) or a gain-of-function (GOF) secondary to a variant in factor B (CFB) or C3. The variants associated with complement regulators are the most prevalent and clearly demonstrate that cofactor activity (CA) is essential to control complement activation and thereby avoid collateral damage to normal tissues. Importantly, multiple studies have now established the therapeutic efficacy of blocking the membrane attack complex (MAC) with a humanized monoclonal antibody that targets the fifth component, C5. In this review, we primarily focus on insights derived from the assessment of rare variants in a membrane complement inhibitor CD46 in aHUS. We also discuss the putative pathological mechanisms relative to these variants of the complement system.
Collapse
Affiliation(s)
- Xiaobo Wu
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - M. Kathryn Liszewski
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anuja Java
- Division Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
13
|
[Electron microscopy in nephropathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:84-94. [PMID: 36480038 DOI: 10.1007/s00292-022-01164-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Non-neoplastic kidney diseases represent a broad spectrum of diseases. Although their pathogenesis differs, the histological findings may be similar in terms of conventional morphology. A precise classification of these diseases is a prerequisite for correct therapy and prognostic assessment. In the diagnostic process, the magnification achieved by electron microscopy is essential and cannot be replaced by any other technique. The most frequent diagnostic questions addressed by ultrastructural studies represent (1) alterations of podocytes (e.g., minimal-change disease), (2) changes of the thickness and structure of the glomerular basement membrane (e.g., diabetic glomerulosclerosis or Alport disease), (3) the presence, characteristics and exact localisation of immune complexes (e.g., membranous glomerulonephritis or lupus nephritis), (4) alterations of endothelial cells and capillaries (e.g., thrombotic microangiopathy) and (5) diseases of the tubular cells (e.g., light-chain nephropathy or toxic effects). Therefore, ultrastructural investigations are-together with conventional microscopy and immunohistochemistry (or immunofluorescence)-an integral part of the so-called triple-diagnostics in routine nephropathology.
Collapse
|
14
|
Gómez-Seguí I, Pascual Izquierdo C, Mingot Castellano ME, de la Rubia Comos J. An update on the pathogenesis and diagnosis of thrombotic thrombocytopenic purpura. Expert Rev Hematol 2023; 16:17-32. [PMID: 36537217 DOI: 10.1080/17474086.2023.2159803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Severe ADAMTS13 deficiency defines thrombotic thrombocytopenic purpura (TTP). ADAMTS13 is responsible for VWF cleavage. In the absence of this enzyme, widespread thrombi formation occurs, causing microangiopathic anemia and thrombocytopenia and leading to ischemic organ injury. Understanding ADAMTS13 function is crucial to diagnose and manage TTP, both in the immune and hereditary forms. AREAS COVERED The role of ADAMTS13 in coagulation homeostasis and the consequences of its deficiency are detailed. Other factors that modulate the consequences of ADAMTS13 deficiency are explained, such as complement system activation, genetic predisposition, or the presence of an inflammatory status. Clinical suspicion of TTP is crucial to start prompt treatment and avoid mortality and sequelae. Available techniques to diagnose this deficiency and detect autoantibodies or gene mutations are presented, as they have become faster and more available in recent years. EXPERT OPINION A better knowledge of TTP pathophysiology is leading to an improvement in diagnosis and follow-up, as well as a customized treatment in patients with TTP. This scenario is necessary to define the role of new targeted therapies already available or coming soon and the need to better diagnose and monitor at the molecular level the evolution of the disease.
Collapse
Affiliation(s)
- Inés Gómez-Seguí
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Cristina Pascual Izquierdo
- Servicio de Hematología y Hemoterapia, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Gregorio Marañón, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
| | - María Eva Mingot Castellano
- Servicio de Hematología, Área de Banco de Sangre y Establecimiento de Tejidos, Hospital Universitario Virgen del Rocío, Calle Manuel Siurot s/n, 41013, Sevilla, Spain
| | - Javier de la Rubia Comos
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe, Avda, Fernando Abril Martorell, 106, 46026, Valencia, Spain.,School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|