1
|
Shimoda M, Nunokawa H, Tanaka Y, Bamba Y, Kikuchi T, Ishiguro T, Suzuki A, Kobayashi F, Takahashi T, Ohta K, Ishii H. Positivity of polymerase chain reaction and Grocott staining in relation to the duration from therapy initiation to examination in Pneumocystis jirovecii pneumonia. Respir Investig 2025; 63:548-553. [PMID: 40300409 DOI: 10.1016/j.resinv.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION The diagnosis of pneumocystis pneumonia (PCP) relies on microscopy and/or polymerase chain reaction (PCR) of bronchoalveolar lavage fluid (BALF). Although Pneumocystis jirovecii can be identified even after therapy initiation, the exact timeframe for reliable testing remains unclear. We investigated the relationship between diagnostic examinations for PCP and the duration from therapy initiation to the time of testing. MATERIALS AND METHODS We retrospectively collected data from 105 patients diagnosed with PCP based on the diagnostic criteria across four institutions from January 2019 to August 2024. The duration from therapy initiation to the time of testing and the corresponding test results were reviewed. RESULTS Among 105 patients, 46 and 44 patients underwent P. jirovecii PCR and Grocott staining of BALF, respectively. Fifty-six patients underwent sputum examination. The positivity of P. jirovecii PCR in BALF appeared to decrease after therapy initiation in non-human immunodeficiency virus (HIV) patients. The positivity rate of Grocott staining was low regardless of treatment. All HIV patients had positive P. jirovecii PCR or Grocott staining results in BALF. Among patients with P. jirovecii PCR-positive results in BALF, the duration from therapy initiation to testing was significantly longer in HIV patients than in non-HIV patients (2.5 days [range 0-7] vs. 0 days [0-4], p < 0.001). CONCLUSION For non-HIV patients who have already received anti-PCP therapy, the use of BALF for PCP diagnosis should be performed as early as possible. In contrast, HIV-positive patients can still be diagnosed with PCP after therapy initiation.
Collapse
Affiliation(s)
- Masafumi Shimoda
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, 204-8522, Japan; Department of Respiratory Medicine, Kyorin University Faculty of Medicine, Mitaka City, Tokyo, 181-8611, Japan.
| | - Hiroki Nunokawa
- Department of Respiratory Medicine, Kyorin University Faculty of Medicine, Mitaka City, Tokyo, 181-8611, Japan
| | - Yoshiaki Tanaka
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, 204-8522, Japan
| | - Yuuki Bamba
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Kumagaya City, Saitama, 360-0197, Japan
| | - Atsushi Suzuki
- Department of Clinical Laboratory, Saitama Cardiovascular and Respiratory Center, Kumagaya City, Saitama, 360-0197, Japan
| | - Fumi Kobayashi
- Department of Respiratory Medicine, Kyorin University Faculty of Medicine, Mitaka City, Tokyo, 181-8611, Japan
| | - Tatsuya Takahashi
- Department of Respiratory Medicine, Kyorin University Faculty of Medicine, Mitaka City, Tokyo, 181-8611, Japan
| | - Ken Ohta
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose City, Tokyo, 204-8522, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University Faculty of Medicine, Mitaka City, Tokyo, 181-8611, Japan
| |
Collapse
|
2
|
Ye X, Lin Y, Yang J, Qi B, Wei X, Huang Y, Wang L. Deciphering the pathogen heterogeneity for precise diagnosis and personalized therapeutics of infections after kidney transplantation: insights from metagenomic next-generation sequencing. Front Cell Infect Microbiol 2024; 14:1456407. [PMID: 39611100 PMCID: PMC11602478 DOI: 10.3389/fcimb.2024.1456407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction The aim of this study was to compare the detection performance of mNGS against that of conventional tests (CT) in patients suffering from infection after kidney transplantation. Methods A total of 138 samples from 85 kidney transplant patients with acute or chronic infections were simultaneously analyzed using mNGS and CT from July 2021 to August 2023. Results Compared with CT, mNGS demonstrated a higher sensitivity (95.96% vs. 27.27%) but lower specificity (48.72% vs. 84.62%) in pathogen detection. Moreover, mNGS exhibited significant advantages in detecting mixed and rare infections. The pathogens commonly identified in kidney transplant patients were severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), followed by Pneumocystis jirovecii and Cytomegalovirus (CMV). mNGS guided the precise clinical diagnosis in 89.13% of cases and assisted in altering therapeutics from empirical antibiotic approaches to personalized plans in 56.10% of cases, including treatment escalation (40.65%), initiation (11.38%), drug adjustment (3.25%), and de-escalation (0.81%). Discussion Our study demonstrated the superior detection performance of mNGS and its significant clinical value. This reflected the great potential of mNGS as a complementary clinical detection technology for kidney transplant patients.
Collapse
Affiliation(s)
- Xin Ye
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangnan Yang
- Department of Medicine, Dinfectome Inc., Nanjing, China
| | - Baocui Qi
- Department of Medicine, Dinfectome Inc., Nanjing, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liangliang Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Zhang Z, Liu T, Ming M, Shen M, Zhang Y, Chen H, Chen W, Tao J, Wang Y, Liu J, Zhou J, Lu G, Yan G. Metagenomic next-generation sequencing promotes diagnosis and treatment of Pneumocystis jirovecii pneumonia in non-HIV infected children: a retrospective study. BMC Pulm Med 2024; 24:338. [PMID: 38997717 PMCID: PMC11241876 DOI: 10.1186/s12890-024-03135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) excels in diagnosis of infection pathogens. We aimed to evaluate the performance of mNGS for the diagnosis of Pneumocystis jirovecii pneumonia (PJP) in non-HIV infected children. METHODS Totally 36 PJP children and 61 non-PJP children admitted to the pediatric intensive care unit from March 2018 to December 2021 were retrospectively enrolled. Clinical features of PJP children were summarized. 1,3-β-D glucan (BDG) test and bronchoalveolar lavage fluid (BALF) mNGS were used for evaluation of PJP diagnostic performance. Antimicrobial management modifications for PJP children after the mNGS results were also reviewed. RESULTS Pneumocystis jirovecii was detected in all PJP children by mNGS (36/36), and the sensitivity of mNGS was 100% (95% confidence interval [CI]: 90.26-100%). The sensitivity of BDG was 57.58% (95% CI: 39.22-74.52%). Of the 26 (72.2%) PJP patients with mixed infection, twenty-four (66.7%) were detected by BALF-mNGS. Thirteen patients (36.1%) had their antimicrobial management adjusted according to the mNGS results. Thirty-six PJP children included 17 (47.2%) primary immunodeficiency and 19 (52.8%) secondary immunodeficiency, of whom 19 (52.8%) survived and 17 (47.2%) died. Compared to survival subgroup, non-survival subgroup had a higher rate of primary immunodeficiency (64.7% vs. 31.6%, P = 0.047), younger age (7 months vs. 39 months, P = 0.011), lower body weight (8.0 kg vs. 12.0 kg, P = 0.022), and lower T lymphocyte counts. CONCLUSIONS The mortality rate of PJP in immunosuppressed children without HIV infection is high and early diagnosis is challenging. BALF-mNGS could help identify PJP and guide clinical management.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Tingyan Liu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Meixiu Ming
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Yi Zhang
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hanlin Chen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Weiming Chen
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Jinhao Tao
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Yixue Wang
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Jing Liu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Jihua Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China.
| | - Gangfeng Yan
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China.
| |
Collapse
|
4
|
Fan B, Sun X, Han W, Zou Y, Chen F, Lan F, Li W, Mao Y. Immune checkpoint inhibitor increased mortality in lung cancer patients with Pneumocystis jirovecii pneumonia: a comparative retrospective cohort study. Front Oncol 2024; 14:1398357. [PMID: 39035737 PMCID: PMC11259962 DOI: 10.3389/fonc.2024.1398357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection in immunocompromised individuals. Immune checkpoint inhibitor (ICI) has brought significant survival benefit in lung cancer patients. Although the few studies showed there was high mortality in PJP patients with ICI use, these studies had no comparative control groups. Methods A retrospective study was conducted to compare the mortality in PJP patients with lung cancer between those treated with ICI and a concurrent control group treated without ICI. Results A total number of 20 non-human immunodeficiency virus (HIV) patients with confirmed PJP and co-existing lung cancer were included in the current study, and classified into ICI group (n=9) and non-ICI group (n=11).There was a clear trend to a shorter onset of PJP in ICI group than non-ICI group (118.9 ± 60.9 vs 253.0 ± 185.1 days), although without statistical significance (p=0.053). Bronchoscopic alveolar lavage fluid were collected from all patients and used to identify Pneumocystis jirovecii. In both groups, metagenomics next-generation sequencing (mNGS) were the most used diagnostic techniques. Within 28 days after the onset of PJP, mortality was significantly higher in the ICI group than non-ICI group (33.3% vs 0, p=0.042). Conclusion Lung cancer patients with ICI use had a higher mortality rate after PJP infection than patients without ICI use. Prospective studies with larger sample size and a multi-center design are warranted to further verify the present results.
Collapse
Affiliation(s)
- Bo Fan
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Jiashan, Jiashan, Zhejiang, China
| | - Xiaoyan Sun
- Department of Gynaecology and Obstetrics, Women’s Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijie Han
- Department of Emergency, People’s Hospital of Haiyan, Haiyan, Zhejiang, China
| | - Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Chen
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Jiashan, Jiashan, Zhejiang, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Orozco-Ugarriza ME, Olivo-Martínez Y, Rodger-Cervantes YE. Protocol for the systematic review of the Pneumocystis jirovecii-associated pneumonia in non-HIV immunocompromised patients. PLoS One 2024; 19:e0302055. [PMID: 38722952 PMCID: PMC11081338 DOI: 10.1371/journal.pone.0302055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/25/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Pneumocystis jirovecii pneumonia (PJP) is a well-known and frequent opportunistic infection in HIV patients. However, there has been an increase in the number of reports of PJP in other immunosuppressed patients with autoimmune inflammatory disorders or because of chemotherapy and high doses of steroids, especially when used in combination as part of immunosuppressive therapy. OBJECTIVE Despite the increasing importance of PJP in non-HIV patients, there is a lack of comprehensive and updated information on the epidemiology, pathogenesis, diagnosis, microbiology, treatments, and prophylaxis of this infection in this population. Therefore, the objective of this systematic review is to synthesize information on these aspects, from a perspective of evidence-based medicine. METHODS The protocol is prepared following the preferred reporting items for systematic reviews and meta-analyses (PRISMA-P) guidelines. We will perform a systematic review of literature published between January 2010 and July 2023, using the databases PubMed, Google Scholar, ScienceDirect, and Web of Science. In addition, manual searches will be carried out through related articles, and references to included articles. The main findings and clinical outcomes were extracted from all the eligible studies with a standardized instrument. Two authors will independently screen titles and abstracts, review full texts, and collect data. Disagreements will be resolved by discussion, and a third reviewer will decide if there is no consensus. We will synthesize the results using a narrative or a meta-analytic approach, depending on the heterogeneity of the studies. EXPECTED RESULTS It is expected that this systematic review will provide a comprehensive and up-to-date overview of the state-of-the-art of PJP in non-HIV patients. Furthermore, the study will highlight possible gaps in knowledge that should be addressed through new research. CONCLUSIONS Here, we present the protocol for a systematic review which will consider all existing evidence from peer-reviewed publication sources relevant to the primary and secondary outcomes related to diagnosing and managing PJP in non-HIV patients.
Collapse
Affiliation(s)
- Mauricio Ernesto Orozco-Ugarriza
- Grupo de Investigación en Microbiología y Ambiente (GIMA), Universidad de San Buenaventura, Cartagena, Colombia
- Grupo de Investigación Traslacional en Biomedicina y Biotecnología (GITB&B), Corporación para el Desarrollo de la Investigación en Biomedicina & Biotecnología, Cartagena, Colombia
| | - Yenifer Olivo-Martínez
- Grupo de Investigación en Microbiología y Ambiente (GIMA), Universidad de San Buenaventura, Cartagena, Colombia
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
| | - Yuranis E. Rodger-Cervantes
- Graduated from the Bacteriology and Clinical Laboratory Program, Faculty of Health Sciences, Universidad de San Buenaventura Cartagena, Cartagena, Colombia
| |
Collapse
|
6
|
Li S, Han X, Ma J, Huang GH, Yang ST, Wang CM. Study on mNGS Technique in Diagnosing Pneumocystis jirovecii Pneumonia in Non-HIV-Infected Patients. Infect Drug Resist 2024; 17:1397-1405. [PMID: 38628239 PMCID: PMC11019452 DOI: 10.2147/idr.s450878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024] Open
Abstract
Objective To investigate the value of metagenomic Next-Generation Sequencing (mNGS) in diagnosing Pneumocystis jirovecii pneumonia (PJP) in non-human immunodeficiency virus (HIV)-infected patients. Methods In this retrospective study, non-HIV-infected patients with PJP and those diagnosed with non-PJP from August 2022 to December 2024 were selected as subjects. The presence of Pneumocystis jirovecii (PJ) and other co-pathogens in bronchoalveolar lavage fluid (BALF) was analyzed, and the diagnostic efficacy of NGS, polymerase chain reaction (PCR) and serum 1,3-β-D-glucan (BDG) in PJP was compared with the reference standard of clinical compound diagnosis. Results Eighty-nine non-HIV-infected patients were recruited, with dyspnea as the primary symptom (69.66%) and solid malignant tumor as the most common underlying disease (20.22%). Taking clinical compound diagnosis as the reference standard, the sensitivity, specificity, negative predictive value and positive predictive value of mNGS were higher than those detected by PCR and serum BDG. Among 42 non-HIV-infected patients with PJP who underwent mNGS and conventional pathogen detection of BALF, 6 had simple PJ infection and 36 had combined PJ infection. The detection rate of mNGS in mixed infections was significantly higher than that of conventional pathogen detection (85.71 vs 61.70%, P = 0.012). A total of 127 pathogens were detected in BALF using mNGS, among which fungi had the highest detection rate (46.46%). The fungi, viruses and bacteria detected were mainly Pneumocystis jirovecii, human gammaherpesvirus 4 and Acinetobacter baumannii. Conclusion mNGS is highly effective in diagnosing non-HIV-infected patients with PJP and exhibits ideal performance in the detection of co-pathogens. In addition, it has certain value for clinical diagnosis and guidance of targeted anti-infective drug treatment.
Collapse
Affiliation(s)
- Shuai Li
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Xue Han
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Jing Ma
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Guo-Hong Huang
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Shu-Ting Yang
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Chang-Min Wang
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, People’s Republic of China
| |
Collapse
|
7
|
Chen XH, Zhou SJ, Liu YY, Cao H, Zheng YR, Chen Q. Application value of metagenomics next-generation sequencing in the diagnosis of respiratory virus infection after congenital heart surgery. Transl Pediatr 2024; 13:260-270. [PMID: 38455752 PMCID: PMC10915445 DOI: 10.21037/tp-23-341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/16/2023] [Indexed: 03/09/2024] Open
Abstract
Background Timely and accurate pathogen diagnosis can be challenging in children who contract a respiratory virus following congenital heart surgery (CHS). This often results in suboptimal drug use and treatment delays. Metagenomics next-generation sequencing (mNGS) is a swift, efficient, and unbiased method for obtaining microbial nucleic acid sequences. This technology holds promise as a comprehensive diagnostic tool, especially for pathogens undetectable by traditional methods. However, the efficacy of mNGS in the context of congenital heart disease infections remains uncertain. This study aimed to explore the diagnostic value of mNGS for respiratory virus infections post-CHS. Methods We conducted a retrospective analysis of patients who developed respiratory tract infections post-CHS and were admitted to our cardiac center between July 2021 and December 2022. The patients were categorized into the following two groups based on the diagnostic method used: (I) the mNGS group (comprising 62 patients); and (II) the conventional microbiological test (CMT) group (comprising 70 patients). Bronchoalveolar lavage fluid (BALF) samples from these patients were tested to identify pathogens. Results The mNGS group had significantly higher detection rates for both viral infections and mixed viral infections than the CMT group (56.45% vs. 17.14%, P<0.001, and 80.00% vs. 16.67%, P<0.001, respectively). In the mNGS group, 19.35% of the patients received antiviral therapy, and 61.29% received an anti-infective regimen adjustment. Conversely, in the CMT group, only 4.29% received antiviral therapy, and 28.57% received an anti-infective regimen adjustment. A higher percentage of patients showed improved respiratory symptoms in the mNGS group than the CMT group (74.19% vs. 44.29%, P=0.001). Additionally, the mNGS group had a shorter duration of mechanical ventilation and a reduced length of stay in the cardiac intensive care unit than the CMT group (P=0.012). Conclusions Using mNGS for BALF enhances the detection of respiratory viral infections and coexisting viral infections post-CHS. This facilitates more precise treatment strategies and could potentially lead to improved patient outcomes.
Collapse
Affiliation(s)
- Xiu-Hua Chen
- Department of Cardiac Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Si-Jia Zhou
- Department of Cardiac Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Ying-Ying Liu
- Department of Cardiac Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | | | | |
Collapse
|
8
|
Bian W, Xie Y, Shang Y, Zhao L, Yang Z, Ma X, He Y, Yu W, Xi W, Yang D, Wang F, Chen Y, Gong P, Gao Z. Relationship between clinical features and droplet digital PCR copy number in non-HIV patients with pneumocystis pneumonia. BMC Infect Dis 2023; 23:833. [PMID: 38012564 PMCID: PMC10683233 DOI: 10.1186/s12879-023-08580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/04/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE Droplet digital PCR (ddPCR) is a novel assay to detect pneumocystis jjrovecii (Pj) which has been defined to be more sensitive than qPCR in recent studies. We aimed to explore whether clinical features of pneumocystis pneumonia (PCP) were associated with ddPCR copy numbers of Pj. METHODS A total of 48 PCP patients were retrospectively included. Pj detection was implemented by ddPCR assay within 4 h. Bronchoalveolar fluid (BALF) samples were collected from 48 patients with molecular diagnosis as PCP via metagenomic next generation sequencing (mNGS) or quantitative PCR detection. Univariate and multivariate logistic regression were performed to screen out possible indicators for the severity of PCP. The patients were divided into two groups according to ddPCR copy numbers, and their clinical features were further analyzed. RESULTS Pj loading was a pro rata increase with serum (1,3)-beta-D glucan, D-dimmer, neutrophil percentage, procalcitonin and BALF polymorphonuclear leucocyte percentage, while negative correlation with albumin, PaO2/FiO2, BALF cell count, and BALF lymphocyte percentage. D-dimmer and ddPCR copy number of Pj were independent indicators for moderate/severe PCP patients with PaO2/FiO2 lower than 300. We made a ROC analysis of ddPCR copy number of Pj for PaO2/FiO2 index and grouped the patients according to the cut-off value (2.75). The high copy numbers group was characterized by higher level of inflammatory markers. Compared to low copy number group, there was lower level of the total cell count while higher level of polymorphonuclear leucocyte percentage in BALF in the high copy numbers group. Different from patients with high copy numbers, those with high copy numbers had a tendency to develop more severe complications and required advanced respiratory support. CONCLUSION The scenarios of patients infected with high ddPCR copy numbers of Pj showed more adverse clinical conditions. Pj loading could reflect the severity of PCP to some extent.
Collapse
Affiliation(s)
- Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Yu Xie
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Zhengwu Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Fang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Yanwen Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China
| | - Pihua Gong
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No.11, Xizhimen South Street, Beijing, China.
| |
Collapse
|
9
|
Burzio C, Balzani E, Corcione S, Montrucchio G, Trompeo AC, Brazzi L. Pneumocystis jirovecii Pneumonia after Heart Transplantation: Two Case Reports and a Review of the Literature. Pathogens 2023; 12:1265. [PMID: 37887781 PMCID: PMC10610317 DOI: 10.3390/pathogens12101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Post-transplant Pneumocystis jirovecii pneumonia (PcP) is an uncommon but increasingly reported disease among solid organ transplantation (SOT) recipients, associated with significant morbidity and mortality. Although the introduction of PcP prophylaxis has reduced its overall incidence, its prevalence continues to be high, especially during the second year after transplant, the period following prophylaxis discontinuation. We recently described two cases of PcP occurring more than one year after heart transplantation (HT) in patients who were no longer receiving PcP prophylaxis according to the local protocol. In both cases, the disease was diagnosed following the diagnosis of a viral illness, resulting in a significantly increased risk for PcP. While current heart transplantation guidelines recommend Pneumocystis jirovecii prophylaxis for up to 6-12 months after transplantation, after that period they only suggest an extended prophylaxis regimen in high-risk patients. Recent studies have identified several new risk factors that may be linked to an increased risk of PcP infection, including medication regimens and patient characteristics. Similarly, the indication for PcP prophylaxis in non-HIV patients has been expanded in relation to the introduction of new medications and therapeutic regimens for immune-mediated diseases. In our experience, the first patient was successfully treated with non-invasive ventilation, while the second required tracheal intubation, invasive ventilation, and extracorporeal CO2 removal due to severe respiratory failure. The aim of this double case report is to review the current timing of PcP prophylaxis after HT, the specific potential risk factors for PcP after HT, and the determinants of a prompt diagnosis and therapeutic approach in critically ill patients. We will also present a possible proposal for future investigations on indications for long-term prophylaxis.
Collapse
Affiliation(s)
- Carlo Burzio
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
| | - Eleonora Balzani
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy;
- School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Giorgia Montrucchio
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| | - Anna Chiara Trompeo
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
| | - Luca Brazzi
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy; (C.B.); (G.M.); (A.C.T.); (L.B.)
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| |
Collapse
|
10
|
Apostolopoulou A, Fishman JA. The Pathogenesis and Diagnosis of Pneumocystis jiroveci Pneumonia. J Fungi (Basel) 2022; 8:1167. [PMID: 36354934 PMCID: PMC9696632 DOI: 10.3390/jof8111167] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Pneumocystis jiroveci remains an important fungal pathogen in immunocompromised hosts. The environmental reservoir remains unknown. Pneumonia (PJP) results from airborne transmission, including in nosocomial clusters, or with reactivation after an inadequately treated infection. Pneumocystis pneumonia most often occurs within 6 months of organ transplantation, with intensified or prolonged immunosuppression, notably with corticosteroids and following cytomegalovirus (CMV) infections. Infection may be recognized during recovery from neutropenia and lymphopenia. Invasive procedures may be required for early diagnosis and therapy. Despite being a well-established entity, aspects of the pathogenesis of PJP remain poorly understood. The goal of this review is to summarize the data on the pathogenesis of PJP, review the strengths and weaknesses of the pertinent diagnostic modalities, and discuss areas for future research.
Collapse
Affiliation(s)
- Anna Apostolopoulou
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jay A. Fishman
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- MGH Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Wang C, You Z, Fu J, Chen S, Bai D, Zhao H, Song P, Jia X, Yuan X, Xu W, Zhao Q, Pang F. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary invasive fungal disease. Front Cell Infect Microbiol 2022; 12:949505. [PMID: 36237437 PMCID: PMC9551268 DOI: 10.3389/fcimb.2022.949505] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundMetagenomic next-generation sequencing (mNGS) is increasingly being used to detect pathogens directly from clinical specimens. However, the optimal application of mNGS and subsequent result interpretation can be challenging. In addition, studies reporting the use of mNGS for the diagnosis of invasive fungal infections (IFIs) are rare.ObjectiveWe critically evaluated the performance of mNGS in the diagnosis of pulmonary IFIs, by conducting a multicenter retrospective analysis. The methodological strengths of mNGS were recognized, and diagnostic cutoffs were determined.MethodsA total of 310 patients with suspected pulmonary IFIs were included in this study. Conventional microbiological tests (CMTs) and mNGS were performed in parallel on the same set of samples. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the logarithm of reads per kilobase per million mapped reads [lg(RPKM)], and read counts were used to predict true-positive pathogens.ResultThe majority of the selected patients (86.5%) were immunocompromised. Twenty species of fungi were detected by mNGS, which was more than was achieved with standard culture methods. Peripheral blood lymphocyte and monocyte counts, as well as serum albumin levels, were significantly negatively correlated with fungal infection. In contrast, C-reactive protein and procalcitonin levels showed a significant positive correlation with fungal infection. ROC curves showed that mNGS [and especially lg(RPKM)] was superior to CMTs in its diagnostic performance. The area under the ROC curve value obtained for lg(RPKM) in the bronchoalveolar lavage fluid of patients with suspected pulmonary IFIs, used to predict true-positive pathogens, was 0.967, and the cutoff value calculated from the Youden index was −5.44.ConclusionsIn this study, we have evaluated the performance of mNGS-specific indicators that can identify pathogens in patients with IFIs more accurately and rapidly than CMTs, which will have important clinical implications.
Collapse
Affiliation(s)
- Chengtan Wang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Zhiqing You
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Juanjuan Fu
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Shuai Chen
- Department of Clinical Laboratory, Liaocheng Third People’s Hospital, Liaocheng, China
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Di Bai
- Department of Clinical Laboratory, Liaocheng Third People’s Hospital, Liaocheng, China
| | - Hui Zhao
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Pingping Song
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiuqin Jia
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiaoju Yuan
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng, China
| | - Wenbin Xu
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Qigang Zhao
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Feng Pang, ; Qigang Zhao,
| | - Feng Pang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Feng Pang, ; Qigang Zhao,
| |
Collapse
|
12
|
Hou JN, Liu HD, Tan QY, Cao FA, Wang SL, Yao MY, Zhao YC. Risk factors of in-hospital mortality in patients with pneumocystis pneumonia diagnosed by metagenomics next-generation sequencing. Front Cell Infect Microbiol 2022; 12:994175. [PMID: 36225233 PMCID: PMC9549864 DOI: 10.3389/fcimb.2022.994175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives The metagenomic next-generation sequencing (mNGS) test is useful for rapid and accurate detection and identification of pathogenic microorganisms. The aim of the present study was to investigate the factors associated with in-hospital mortality in pneumocystis pneumonia (PCP) patients with mNGS-assisted diagnosis. Methods Our study enrolled 154 patients with mNGS-positive PCP from August 2018 to February 2022 at the First Affiliated Hospital of Zhengzhou University respectively. Patients were divided into the survivor group (n=98) and the death group (n=56) according to whether in-hospital death occurred. Baseline characteristics, patients’ pre-hospital symptoms and patients’ CT imaging performance during hospitalization were carefully compared between the two groups. Risk factors for the occurrence of in-hospital death were sought by selecting indicators that were significantly different between the two groups for modelling and performing multiple logistic regression analysis. Results Compared with the in-hospital death patients, the survivors were younger and had higher levels of albumin (ALB) (age: 50.29 ± 14.63 years vs 59.39 ± 12.27 years, p<0.001; ALB: 32.24 ± 5.62 g/L vs 29.34 ± 5.42g/L, p=0.002; respectively), while the levels of lactate dehydrogenase (LDH) and C-reactive protein CRP were lower (LDH: 574.67 ± 421.24 U/L vs 960.80 ± 714.94 U/L, p=0.001; CRP: 54.97 ± 55.92 mg/L vs80.45 ± 73.26 mg/L, p=0.018; respectively). Multiple logistic regression analysis revealed that age, the baseline LDH and CRP levels were all positively associated with high in-hospital mortality [age: OR(95%CI): 1.115 (1.062-1.172), p<0.001; LDH: OR(95%CI): 1.002 (1.001-1.003), p<0.001; CRP: OR(95%CI): 1.008 (1.000-1.017), p=0.045; respectively] while the platelet counts was negatively associated with it [OR(95%CI): 0.986 (0.979-0.992), p<0.001]. Conclusions Old age, high baseline levels of LDH and CRP and low platelet counts were risk factors of the in-hospital mortality in mNGS positive PCP patients.
Collapse
Affiliation(s)
- Jun-Na Hou
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heng-Dao Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiu-Yue Tan
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng-An Cao
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Lei Wang
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Ying Yao
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Meng-Ying Yao, ; Yang-Chao Zhao,
| | - Yang-Chao Zhao
- Department of Extracorporeal Life Support Center, Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Meng-Ying Yao, ; Yang-Chao Zhao,
| |
Collapse
|